The Progress of Microalgae Biofuel Cells

$20.00

The Progress of Microalgae Biofuel Cells

Rajesh K. Srivastava

The microalgal cell provides an alternative source for bioenergy generation with application in microbial fuel cells (MFCs) construction. Availability in an environmentally friendly nature, it has exhibited the capability to capture CO2 gas with an accumulation of rich oil contents for biofuel. Biodiesel, bioethanol, methane or hydrogen production capabilities are found in microalgae. Microalgae-MFC has contributed in electricity generation by using the electrons released at the anode electrode. Microalgae are also useful in simultaneous electricity generation and wastewater treatment. In this chapter, our focus is on the advantages, limitations and future prospects of microalgae species, highlighting enhanced biofuel production.

Keywords
Microbial Fuel Cells (MFC), Biofuels, Microalgae, CO2 Emissions, Wastewater Treatment, Electricity Generation

Published online 2/21/2019, 32 pages

Citation: Rajesh K. Srivastava, The Progress of Microalgae Biofuel Cells, Materials Research Foundations, Vol. 46, pp 21-52, 2019

DOI: https://dx.doi.org/10.21741/9781644900116-2

Part of the book on Microbial Fuel Cells

References
[1] A. Singh, P.S. Nigam, J.D. Murphy, Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 102 (2011) 10-16. https://doi.org/10.1016/j.biortech.2010.06.032
[2] S. Pandit, D. Das, Role of Microalgae in Microbial Fuel Cell. D. Das, (Eds.), Algal Biorefinery: An Integrated Approach, Capital Publishing Company Springer, 2015, pp. 375-399.
[3] R.A. Rozendal, H.V.M. Hamelers, K.Rabaey, J. Keller, C.J.N. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnol. 26 (2008) 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008
[4] S. Kondaveeti, K.S. Choi, R. Kakarla, B. Min, Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs), Front. Environ. Sci. Eng. 8 (2013) 784-791. https://doi.org/10.1007/s11783-013-0590-4
[5] I. Gajda, J. Greenman, C. Melhuish, I. Ieropoulos, Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy, 82 (2015) 87-93. https://doi.org/10.1016/j.biombioe.2015.05.017
[6] F. Kong, I.T. Romero, J. Warakanont, Y. Li-Beisson, Lipid catabolism in microalgae. New Phytol. 218 (2018) 1340-1348. https://doi.org/10.1111/nph.15047
[7] P. Wensel, G. Helms, B. Hiscox, W.C. Davis, H. Kirchhoff, M. Bule, L. Yu, S. Chen, Isolation, characterization, and validation of oleaginous, multitrophic, and haloalkaline-tolerant microalgae for two-stage cultivation. Algal Res. 4 (2014) 2-11. https://doi.org/10.1016/j.algal.2013.12.005
[8] M. Faried, M. Samer, E. Abdelsalam, R.S. Yousef, Y.A. Attia, A.S. Ali, Biodiesel production from microalgae: Processes, technologies and recent advancements. Renew. Sust. Energ. Rev. 79 (2017) 893-913. https://doi.org/10.1016/j.rser.2017.05.199
[9] X.B. Tan, M.K. Lam, Y. Uemura, J.W. Lim, C.Y. Wong, K.T. Lee, Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chin. J. Chem. Eng. 26 (2018) 17-30. https://doi.org/10.1016/j.cjche.2017.08.010
[10] C.E.F. Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochem. 51 (2016) 1833-1842. https://doi.org/10.1016/j.procbio.2016.02.016
[11] E.I. Lan, J.C. Liao, Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13 (2011) 353-363. https://doi.org/10.1016/j.ymben.2011.04.004
[12] J. Milano, H.C. Ong, H.H. Masjuki, W.T. Chong, M.K. Lam, P.K. Loh, V.Vellayan, Microalgae biofuels as an alternative to fossil fuel for power generation. Renew. Sust. Energ. Rev. 58 (2016) 180-197. https://doi.org/10.1016/j.rser.2015.12.150
[13] N. Pragya, K.K. Pandey, P.K. Sahoo, A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sust. Energ. Rev. 24 (2013) 159-171. https://doi.org/10.1016/j.rser.2013.03.034
[14] B.H. Kiepper, Microalgae Utilization in Wastewater Treatment. UGA Cooperative Extension Bulletin 1419, the University of Georgia and Ft. Valley State University, 2013.
15] I. Khozin-Goldberg, Lipid Metabolism in Microalgae. M.A. Borowitzka, J. Beardall, J.A. Raven, (Eds.), The Physiology of Microalgae, Springer, 2016, pp.413-484.
[16] S. Bellou, M.N. Baeshen, A.M. Elazzazy, D. Aggeli, F. Sayegh, G. Aggelis, Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv. 32 (2014) 1476-93. https://doi.org/10.1016/j.biotechadv.2014.10.003
[17] C.H. Tan, P.L. Show, J-S. Chang, T.C. Ling, J. C.-W. Lan, Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnol. Adv. 33 (2015) 1219-1227. https://doi.org/10.1016/j.biotechadv.2015.02.013
[18] J.L. Blatti, J. Michaud, M.D. Burkart, Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr. Opin. Chem. Biol. 17 (2013) 496-505. https://doi.org/10.1016/j.cbpa.2013.04.007
[19] J.A. Gimpel, E.A. Specht, D.R. Georgianna, S.P. Mayfield, Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol. 17 (2013) 489-95. https://doi.org/10.1016/j.cbpa.2013.03.038
[20] A.W.D. Larkum, I.L. Ross, O. Kruse, B. Hankamer, Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnol. 30 (2012) 198-205. https://doi.org/10.1016/j.tibtech.2011.11.003
[21] D. Fleury, J. Marshall, A modular photosynthetic microbial fuel cell with interchangeable algae solar compartments. BioRxiv (2017) 166793. https://doi.org/10.1101/166793
[22] C. Xu, K. Poon, M.M. Choi, R. Wang, Using live algae at the anode of a microbial fuel cell to generate electricity. Environ. Sci. Pollut. Res. Int. 22 (2015) 15621-15635. https://doi.org/10.1007/s11356-015-4744-8
[23] X.Y. Wu, T.S. Song, X.J. Zhu, P. Wei, C.C. Zhou, Construction and operation of microbial fuel cell with Chlorella vulgar is biocathode for electricity generation. Appl. Biochem. Biotechnol. 171 (2013) 2082-2092. https://doi.org/10.1007/s12010-013-0476-8
[24] E. Kojima, K. Zhang, Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J. Biosci. Bioeng. 87 (1999) 811–815. https://doi.org/10.1016/S1389-1723(99)80158-3
[25] M. Hannon, J. Gimpel, M. Tran, B. Rasala, S. Mayfield, Biofuels from algae: challenges and potential. Biofuels 1 (2010) 763–784. https://doi.org/10.4155/bfs.10.44
[26] J.N. Rosenberg, G. A. Oyler, L. Wilkinson, M. J. Betenbaugh, A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19 (2008) 430-436. https://doi.org/10.1016/j.copbio.2008.07.008
[27] W. Fang, Y. Si, S. Douglass, D. Casero, S.S. Merchant, M. Pellegrini, I. Ladunga, P. Liu, M.H. Spalding. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2 concentrating mechanism regulator CIA5/CCM1. Plant Cell 24 (2012) 1876–1893. https://doi.org/10.1105/tpc.112.097949
[28] R. Zhang, W. Patena, U. Armbruster, S.S. Gang, S.R. Blum, M.C. Jonikas, High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26 (2014)1398–1409. https://doi.org/10.1105/tpc.114.124099
[29] A. Molnar, F. Schwach, D.J. Studholme, E.C. Thuenemann, D.C Baulcombe, miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447 (2007) 1126–1129. https://doi.org/10.1038/nature05903
[30] Y.T. Li, D.X. Han, G.R. Hu, M. Sommerfeld, Q.A. Hu, Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107 (2010) 258–268. https://doi.org/10.1002/bit.22807
[31] B.S. Liu, C. Benning, Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 24 (2013) 300–309. https://doi.org/10.1016/j.copbio.2012.08.008
[32] M. La Russa, C. Bogen, A. Uhmeyer, A. Doebbe, E. Filippone, O. Kruse, J.H. Mussgnug Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J. Biotechnol. 162 (2012) 13–20. https://doi.org/10.1016/j.jbiotec.2012.04.006
[33] E.M. Trentacoste, R.P. Shrestha, S.R. Smith, C. Gle, A.C. Hartmann, M. Hildebrand, W.H. Gerwick, Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. 110 (2013)19748–19753 https://doi.org/10.1073/pnas.1309299110
[34] W.L. Yu, W. Ansari, N.G. Schoepp, M.J. Hannon, S.P. Mayfield, M.D. Burkart, Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb. Cell Fact. 10 (2011) 11-15. https://doi.org/10.1186/1475-2859-10-91
[35] H. Teramoto, A.Nakamori, J. Minagawa, T. Ono, Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Physiol. 130 (2002) 325–333. https://doi.org/10.1104/pp.004622
[36] R.M. Dent, C.M. Haglund, B.L. Chin, M.C. Kobayashi, K.K. Niyogi, Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 137 (2005) 545–556. https://doi.org/10.1104/pp.104.055244
[37] O. Kilian, C.S. Benemann, K.K. Niyogi, B. Vick, High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. 108 (2011) 21265–21269 https://doi.org/10.1073/pnas.1105861108
[38] M.A. Scranton, J.T. Ostrand, F.J. Fields, S.P. Mayfield, Chlamydomonas as a model for biofuels and bio-products production. The Plant J. 82 (2015) 523–531. https://doi.org/10.1111/tpj.12780
[39] S.S. Merchant, J. Kropat, B.S. Liu, J. Shaw, J. Warakanont TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr. Opin. Biotechnol. 23 (2012) 352–363. https://doi.org/10.1016/j.copbio.2011.12.001
[40] P. Sharma, P. Patil, N. Rao, K.V. Swamy, M.B. Khetmalas, G.D. Tandon, Mapping Biodiversity of Indigenous Freshwater Chlorophytes. Res. J. Pharm. Biol. Chem. Sci. (RJPBCS), 5(3) (2014) 1632-1639.
[41] I. Haq, A. Muhammad, U. Hameed, Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters. Prikl. Biokhim. Mikrobiol. 50 (2014) 80-84. https://doi.org/10.7868/S0555109913060093
[42] C. Wang, Z. Wang, F. Luo, Y. Li, The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy. World J. Microbiol. Biotechnol. 33 (2017) 160-168. https://doi.org/10.1007/s11274-017-2324-4
[43] G. Blanc, I. Agarkova, J. Grimwood, A. Kuo, A. Brueggeman, D.D. Dunigan, J. Gurnon, I. Ladunga, E. Lindquist, S. Lucas, J. Pangilinan, T. Pröschold, A. Salamov, J. Schmutz, D. Weeks, T.Yamada, A. Lomsadze, M. Borodovsky, J.M. Claverie, I.V. Grigoriev, J.L. Van Etten, The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 13 (2012) R39. https://doi.org/10.1186/gb-2012-13-5-r39
[44] A.J. Cornish, R.Green, K. Gärtner, S.Mason, E.L. Hegg, Characterization of hydrogen metabolism in the multicellular green alga Volvox carteri. PloS One 10 (2015) e0125324. https://doi.org/10.1371/journal.pone.0125324
[45] S.E. Prochnik, J. Umen, A.M. Nedelcu, A. Hallmann, S.M. Miller, I.Nishii, P. Ferris, A. Kuo, T. Mitros, L.K. Fritz-Laylin, U. Hellsten, J. Chapman, O. Simakov, S.A. Rensing, A. Terry, J. Pangilinan, V. Kapitonov, J. Jurka, A. Salamov, H. Shapiro, J. Schmutz, J. Grimwood, E. Lindquist, S. Lucas, I.V. Grigoriev, R. Schmitt, D. Kirk, D.S. Rokhsar. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Sci. 329 (2010) 223-226. https://doi.org/10.1126/science.1188800
[46] N. Sumiya, S. Miyagishima, Metabolic engineering of Cyanidioschyzon merolae. T. Kuroiwa, S. Miyagishima, S. Matsunaga, N. Sato, H. Nozaki, (Eds.), Cyanidioschyzon merolae: A New Model Eukaryote for Cell and Organelle Biology (). Springer Singapore, 2018, pp. 343-354
[47] M. Matsuzaki, O. Misumi, I.T. Shin, S. Maruyama, M. Takahara, S.Y. Miyagishima, T. Mori, K. Nishida, F. Yagisawa, K. Nishida, Y. Yoshida, Y. Nishimura, S. Nakao, T. Kobayashi, Y. Momoyama, T. Higashiyama, A. Minoda, M. Sano, H. Nomoto, K. Oishi, H. Hayashi, F. Ohta, S. Nishizaka, S. Haga, S. Miura, T. Morishita, Y. Kabeya, K. Terasawa, Y. Suzuki, Y. Ishii, S. Asakawa, H. Takano, N. Ohta, H. Kuroiwa, K. Tanaka, N. Shimizu, S. Sugano, N. Sato, H. Nozaki, N. Ogasawara, Y. Kohara, T. Kuroiwa, Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428 (2004) 653-257. https://doi.org/10.1038/nature02398
[48] N. Sato, T. Moriyama, N. Mori, M. Toyoshima, Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J. Microbiol. Biotechnol. 33 (2017) 74. https://doi.org/10.1007/s11274-017-2236-3
[49] D. Bhattacharya, D.C. Price, C.X. Chan, H. Qiu, N. Rose, S.Ball, A.P.M. Weber, M. C. Arias, B. Henrissat, P.M. Coutinho, A. Krishnan, S. Zäuner, S. Morath, F. Hilliou, A. Egizi, M.M. Perrineau, H.S. Yoon, Genome of the red alga Porphyridium purpureum. Nature Comm. 4 (2013) 1941. https://doi.org/10.1038/ncomms2931
[50] T. Selvaratnam, H. Reddy, T. Mupaneni, F.O. Holguin, N. Nirmalakhandan, S. Deng, P.J. Lammers, Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria, Algal Res. 12 (2015) (2015) 74-79.
[51] G. Schönknecht, W.H. Chen, C.M. Ternes, G.G. Barbier, R.P. Shrestha, M. Stanke, A. Bräutigam, B.J. Baker, J.F. Banfield, R.M. Garavito, K. Carr, C. Wilkerson, S.A. Rensing, D. Gagneul, N.E. Dickenson, C. Oesterhelt, M.J. Lercher, A.P. Weber, Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Sci. 339 (2013) 1207-1210. https://doi.org/10.1126/science.1231707
[52] K. Yamane, S. Matsuyama, K. Igarashi, M. Utsumi, Y. Shiraiwa, T. Kuwabara, Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis. Appl. Environ. Microbiol. 79 (2013) 924-930. https://doi.org/10.1128/AEM.01685-12
[53] B.A. Read, J. Kegel, M.J. Klute, A. Kuo, S.C. Lefebvre, F. Maumus, C. Mayer, J. Miller, A. Monier, A. Salamov, J. Young, M. Aguilar, J.M. Claverie, S. Frickenhaus, K. Gonzalez, E.K. Herman, Y.C. Lin, J. Napier, H. Ogata, A.F. Sarno, J. Shmutz, D. Schroeder, C. de Vargas, F. Verret, von P. Dassow, K. Valentin, Y. Van de Peer, G. Wheeler, J.B. Dacks, C.F. Delwiche, S.T. Dyhrman, G. Glöckner, U. John, T. Richards, A.Z. Worden, X. Zhang, I.V. Grigoriev, Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499 (2013) 209-213. https://doi.org/10.1038/nature12221
[54] E.Y. Artamonova1, T. Vasskog, H.C. Eilertsen, Lipid content and fatty acid composition of Porosira glacialis and Attheya longicornis inresponse to carbon dioxide (CO2) aeration. PLoS One 12 (2017) e0177703. https://doi.org/10.1371/journal.pone.0177703
[55] J.A. Raymond, H.J. Kim, Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7 (2012) e35968. https://doi.org/10.1371/journal.pone.0035968
[56] H. Chtourou, I. Dahmen, I. Dahmen, F. Karray, A. Dhouib, Biodiesel production of amphora sp. and navicula sp. by different cell disruption and lipid extraction methods. J. Biobased Materials Bioener. 9 (2015) 588-595. https://doi.org/10.1166/jbmb.2015.1563
[57] M Hildebrand, R.M. Abbriano, J.E.W. Polle, J.C. Traller, E.M. Trentacoste, S.R Smith, A.K. Davis, Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Cur Opin Chem. Biol 17 (2013) 506–514 https://doi.org/10.1016/j.cbpa.2013.02.027
[58] C.E. Moore, B. Curtis, T. Mills, G. Tanifuji, J.M. Archibald, Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biol. Evol. 4 (2012) 1162–1175. https://doi.org/10.1093/gbe/evs090
[59] P. Pandey, V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil, D. Pant, Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Ener. 168 (2016) 706-723. https://doi.org/10.1016/j.apenergy.2016.01.056
[60] C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications: A review. J. Power Sour. 356 (2017) 225-244. https://doi.org/10.1016/j.jpowsour.2017.03.109
[61] C. Santoro, S. Rojas-Carbonell, R. Awais, R. Gokhale, M.Kodali, A. Serov, K. Artyushkova, P. Atanassov, Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. J. Power Sour. 375 (2018) 11–20. https://doi.org/10.1016/j.jpowsour.2017.11.039
[62] B.E. Logan, M.J. Wallack, K.-Y. Kim, W. He, Y. Feng, P.E. Saikaly, Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2 (2015) 206–214. https://doi.org/10.1021/acs.estlett.5b00180
[63] M. Sawa, A. Fantuzzi, P. Bombelli, C.J. Howe, K. Hellgardt, P.J. Nixon, Electricity generation from digitally printed cyanobacteria Nature Comm. 8 (2017) 1327.
[64] S. Choi, Microscale microbial fuel cells: Advances and challenges. Biosens. Bioelectron. 69 (2015) 8−25. https://doi.org/10.1016/j.bios.2015.02.021
[65] B.E. Logan, Microbial Fuel Cells, John Wiley and Sons, New Jersey, 2008.
[66] R. Timmers, M. Rothballer, D. Strik, M. Engel, S. Schulz, M. Schloter, A. Hartmann, B. Hamelers, C. Buisman, Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Appl. Microbiol. Biotechnol. 94 (2012) 537-548. https://doi.org/10.1007/s00253-012-3894-6
[67] C. Xu, Algae grown anode microbial fuel cell and its application in power generation and biosensor. Open Access Theses and Dissertations. 169, Hong Kong Baptist University, (2016)
[68] R. Huarachi-Olivera, A. Due-as-Gonza, U. Yapo-Pari, P. Vega, M. Romero-Ugarte, J. Tapia, L. Molina, A. Lazarte-Rivera, D.G. Pacheco-Salazar, M. Esparza, Bioelectrogenesis with microbial fuel cells (MFCs) using the microalga Chlorella vulgaris and bacterial communities. Elect. J. Biotechnol. 31 (2018) 34–43. https://doi.org/10.1016/j.ejbt.2017.10.013
[69] A. Gunawardena, S. Fernando, F. To, Performance of a Yeast-mediated Biological Fuel Cell. Int. J. Mol. Sci. 9 (2008) 1893–1907. https://doi.org/10.3390/ijms9101893
[70] A.S. Mathuriya, V.N. Sharma, electricity generation by Saccharomyces cerevisae and Clostridium acetobutylicum via microbial fuel cell technology: A comparative study. Adv. Biol. Res. 4 (2010) 217-223.
[71] M. Rosenbaum, U. Schröder, F. Scholz, Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl. Microbiol. Biotechnol. 68 (2005) 753–756. https://doi.org/10.1007/s00253-005-1915-4
[72] S. Angioni, L. Millia, P. Mustarelli, E. Doria, M. E. Temporiti, B. Mannucci, F. Corana, E. Quartarone. Photosynthetic microbial fuel cell with polybenzimidazole membrane: synergy between bacteria and algae for wastewater removal and biorefinery. Heliyon 4 (2018) e00560 https://doi.org/10.1016/j.heliyon.2018.e00560
[73] H. Liu, B.E. Logan, Electricity generation using an air cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38 (2004) 4040–4046. https://doi.org/10.1021/es0499344
[74] H. Jiang, Combination of microbial fuel cells with microalgae cultivation for bioelectricity generation and domestic wastewater treatment. Environ. Eng. Sci. 34 (2017) 489–495. https://doi.org/10.1089/ees.2016.0279
[75] S.B. Velasquez-Orta, D. Werner, J.C. Varia, S. Mgana, Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality. Water Res. 117 (2017) 9-17 https://doi.org/10.1016/j.watres.2017.03.040
[76] T.H. Pham, J.K. Jang, I.S. Chang, B.H. Kim, Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 14 (2004) 324–329.
[77] A.D. Tharali, N. Sain, W.J. Osborne, Microbial fuel cells in bioelectricity production. J. Front. Life Sci. 9 (2016) 252-266. https://doi.org/10.1080/21553769.2016.1230787
[78] K. Li, S. Liu, X. Liu, An overview of algae bioethanol production. Int. J. Ener Res. 38 (2014) 965–977. https://doi.org/10.1002/er.3164
[79] F.S. Eshaq, M.N. Ali, M.K. Mohd, Production of bioethanol from next generation feed-stock alga Spirogyra species. Int. J. Eng. Sci. Technol. 3 (2011) 1749–1755.
[80] O.K. Lee, D.H. Seong, C.G. Lee, E.Y. Lee, Sustainable production of liquid biofuels from renewable microalgae biomass. J. Ind. Eng. Chem. 29 (2015) 24–31. https://doi.org/10.1016/j.jiec.2015.04.016
[81] M.M. El-Dalatony, E.S. Salama, M.B. Kurade, S.H.A. Hassan, S.E. Oh, S. Kim, B.H. Jeon, Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies 10 (2017) 2110-2125. https://doi.org/10.3390/en10122110
[82] M.N.B. Hossain, J.K. Basu, M. Mamun, The production of ethanol from micro-algae spirulina. Procedia Eng. 105 (2015) 733-738. https://doi.org/10.1016/j.proeng.2015.05.064
[83] T.K. Yeong, K. Jiao, X. Zeng, L. Lin, S.Pan, M.K. Danquah, Microalgae for biobutanol production–Technology evaluation and value proposition. Algal Res. 31 (2018) 367-376. https://doi.org/10.1016/j.algal.2018.02.029
[84] H.H. Cheng, L.M. Whang, K.C. Chan, M.C. Chung, S.H. Wu, C.P. Liu, S.Y. Tien, S.Y. Chen, J.S. Chang, W.J. Lee, Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour. Technol. 184 (2015) 379-385. https://doi.org/10.1016/j.biortech.2014.11.017
[85] J. Ellis, N. Hengge, R. Sims, C. Miller, Acetone, butanol, and ethanol production from wastewater algae, Bioresour. Technol. 111 (2012) 491–495. https://doi.org/10.1016/j.biortech.2012.02.002
[86] H. Zhang, D. Jin, X.J. Zhao, Butanol production using carbohydrate-enriched Chlorella vulgaris as feedstock. Adv. Materials Res. 830 (2014) 122-125.
[87] G.F. Torres, J. Pittman, C, Theodoropoulos, Optimization of microalgal starch formation for the biochemical production of biobutanol. 27th European Symposium on Computer-Aided Process Engineering – Barcelona, Spain, 1 -5th Oct 2017. https://doi.org/10.1016/B978-0-444-63965-3.50485-2
[88] W. Khetkorn, R.P. Rastogi, A. Incharoensakdi, P. Lindblad, D. Madamwar, A. Pandey, C. Larroche Microalgal hydrogen production–A review. Bioresour. Technol. 243 (2017) 1194-1206. https://doi.org/10.1016/j.biortech.2017.07.085
[89] A. Sharma, S.K. Arya, Hydrogen from algal biomass: A review of production process. Biotechnol. Reports 15 (2017) 63-69. https://doi.org/10.1016/j.btre.2017.06.001
[90] G. Buitrón, J. Carrillo-Reyes, M. Morales, C. Faraloni, G. Torzill, Biohydrogen production from microalgae. C. Gonzalez-Fernandez, R. Mu-oz, (Eds.), Microalgae-Based Biofuels and Bioproducts. From Feedstock Cultivation to End-products, Woodhead Publishing Series in Energy, 2017, pp.209-234.
[91] S.S. Oncel, A.K.C.Faraloni, E. Imamoglu, M. Elibol, G.Torzillo, F.V. Sukan, Biohydrogen production from model microalgae Chlamydomonas reinhardtii: A simulation of environmental conditions for outdoor experiments. Int. J. Hydrogen Ener. 40 (2015) 7502-7510. https://doi.org/10.1016/j.ijhydene.2014.12.121
[92] D. Nagarajan, D.J. Lee, A. Kondo, J.S. Chang, Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresour. Technol. 227 (2017) 373-387. https://doi.org/10.1016/j.biortech.2016.12.104
[93] W.M. Alalayah, Y.A. Alhamed, A. Al-Zahrani, G. Edris, Experimental investigation parameters of hydrogen production by algae Chlorella vulgaris. International Conference on Chemical, Environment & Biological Sciences (CEBS-2014) Sept. 17-18, 2014 Kuala Lumpur (Malaysia).
[94] N. Mallick, S. Mandal, A.K. Singh, M. Bishai, A. Dash, Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87 (2012) 137-145. https://doi.org/10.1002/jctb.2694
[95] C. Soumya, H.A.P. Avadhani, R. Vidhya, V. Moses, Production of biofuel from micro algae (Chlorella pyrenoidosa) using vertical reactor system and effect of nitrogen on growth and lipid content. J. Acad. Indust. Res. 4 (2015) 179-182.
[96] M. Mondal, S. Goswami, A. Ghosh, G. Oinam, O.N. Tiwari, P. Das, K. Gayen, M. K. Mandal, G.N. Halder, Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech. 7 (2017) 99.
[97] X. Wen, K. Du, Z. Wang, X. Peng, L. Luo, H. Tao, Y. Xu, D. Zhang, Y. Geng Yeguang, Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels 9 (2016) 123. https://doi.org/10.1186/s13068-016-0541-y
[98] C. Cavinato, A. Ugurlu, I. de Godos, E. Kendir, C. Gonzalez-Fernandez, Biogas production from microalgae. R. Mu-oz, C. Gonzalez-Fernandez (Eds.), Microalgae-Based Biofuels and Bioproducts, From Feedstock Cultivation to End-products, Woodhead Publishing Series in Energy 2017, pp. 155-182.
[99] S. He, X. Fan, N.R. Katukuri, X.Yuan, F.Wang, R.B. Guo, Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour. Technol. 204 (2016) 145-151. https://doi.org/10.1016/j.biortech.2015.12.073
[100] M. Solé-Bundó, C.Eskicioglu, M. Garfí, H.Carrère, I.Ferrer, Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour. Technol. 237 (2017) 89-98. https://doi.org/10.1016/j.biortech.2017.03.151
[101] M. Barragán-Trinidad, J. Carrillo-Reyes, G. Buitrón, Hydrolysis of microalgal biomass using ruminal microorganisms as a pretreatment to increase methane recovery. Bioresour. Technol. 244 (2017) 100-107. https://doi.org/10.1016/j.biortech.2017.07.117