Microbial Production of Propanol

$20.00

Microbial Production of Propanol

Mehmet Gülcan, Fulya Gülbağça, Kubra Sevval Cevik, Remziye Kartop, Fatih Şen

Propanol can be present in two forms, 1-propanol and 2-propanol, and can be used as biofuel. Especially, the reduction of fossil resources required for renewable energy has paid attention for the inorganic synthesis of propanol. In this regard, the microbial production of propanol is very important. This chapter examines the latest developments in microbial production of propanol. Normally, various synthesis ways of propanol have been developed. However, it has been indicated that the optimization of fermentation conditions has enhanced the prevention of toxic propanol accumulation. For this reason, the low cost and high-efficiency propanol production with the help of biosynthetic pathways from microorganisms is one of the major challenges in microbial fuel cells.

Keywords
Biofuel Cells, Enzymes, Graphene Composites, Bioenergy, Propanol

Published online 2/21/2019, 19 pages

Citation: Mehmet Gülcan, Fulya Gülbağça, Kubra Sevval Cevik, Remziye Kartop, Fatih Şen, Microbial Production of Propanol, Materials Research Foundations, Vol. 46, pp 335-353, 2019

DOI: https://dx.doi.org/10.21741/9781644900116-13

Part of the book on Microbial Fuel Cells

References
[1] Y. Liu, Z. Yan, X. Lu, D. Xiao, & H. Jiang, Improving The Catalytic Activity of Isopentenyl Phosphate Kinase through Protein Coevolution Analysis. Scientific Reports, 6 (2016) 1–7. https://doi.org/10.1038/srep24117.
[2] M. Zareian, P. Silcock, & P. Bremer, Effect of Medium Compositions on Microbially Mediated Volatile Organic Compounds Release Profile. Journal of Applied Microbiology, 125 (2018) 813–827. https://doi.org/10.1111/jam.13908.
[3] W. Zhou, H. Bi, Y. Zhuang, Q. He, H. Yin, T. Liu, & Y. Ma, Production of Cinnamyl Alcohol Glucoside from Glucose in Escherichia coli. Journal of Agricultural and Food Chemistry, 65 (2017) 2129–2135. https://doi.org/10.1021/acs.jafc.7b00076.
[4] I. M. Mukisa, Y. B. Byaruhanga, C. M. B. K. Muyanja, T. Langsrud, & J. A. Narvhus, Production of Organic Flavor Compounds by Dominant Lactic Acid Bacteria and Yeasts from Obushera, A Traditional Sorghum Malt Fermented Beverage. Food Science and Nutrition, 5 (2017) 702–712. https://doi.org/10.1002/fsn3.450.
[5] M. Gottardi, J. D. Knudsen, L. Prado, M. Oreb, P. Branduardi, & E. Boles, De novo biosynthesis of Trans-Cinnamic Acid Derivatives in Saccharomyces Cerevisiae. Applied Microbiology and Biotechnology, 101 (2017) 4883–4893. https://doi.org/10.1007/s00253-017-8220-x.
[6] V. Koppolu & V. K. Vasigala, Role of Escherichia coli in Biofuel Production. Microbiology Insights, 9 (2016) 29–35. https://doi.org/10.4137/MBI.S10878.
[7] T. Walther & J. M. François, Microbial Production of Propanol. Biotechnology Advances, 34 (2016) 984–996. https://doi.org/10.1016/j.biotechadv.2016.05.011.
[8] S. Shi, Y. W. Choi, H. Zhao, M. H. Tan, & E. L. Ang, Discovery and Engineering of A 1-Butanol Biosensor in Saccharomyces Cerevisiae. Bioresource Technology, 245 (2017) 1343–1351. https://doi.org/10.1016/j.biortech.2017.06.114.
[9] A. Kongpol, J. Kato, T. Tajima, T. Pongtharangkul, & A. S. Vangnai, Enhanced 3-Methylcatechol Production by Pseudomonas Putida TODE1 in A Two-Phase Biotransformation System. The Journal of General and Applied Microbiology, 60 (2014) 183–190. https://doi.org/10.2323/jgam.60.183.
[10] V. A. Boumba, N. Kourkoumelis, P. Gousia, V. Economou, C. Papadopoulou, & T. Vougiouklakis, Modeling Microbial Ethanol Production By E. Coli under Aerobic/Anaerobic Conditions: Applicability to Real Postmortem Cases and to Postmortem Blood Derived Microbial Cultures. Forensic Science International, 232 (2013) 191–198. https://doi.org/10.1016/j.forsciint.2013.07.021.
[11] L. Fariña, K. Medina, M. Urruty, E. Boido, E. Dellacassa, & F. Carrau, Redox Effect on Volatile Compound Formation in Wine During Fermentation by Saccharomyces Cerevisiae. Food Chemistry, 134 (2012) 933–939. https://doi.org/10.1016/j.foodchem.2012.02.209.
[12] K. Srirangan, L. Akawi, X. Liu, A. Westbrook, E. J. M. Blondeel, M. G. Aucoin, M. Moo-Young, & C. P. Chou, Manipulating The Sleeping Beauty Mutase Operon for The Production of 1-Propanol in Engineered Escherichia coli. Biotechnology for Biofuels, 6 (2013) 1–14. https://doi.org/10.1186/1754-6834-6-139.
[13] C. H. Luna-Flores, C. C. Stowers, B. M. Cox, L. K. Nielsen, & E. Marcellin, Linking Genotype and Phenotype in An Economically Viable Propionic Acid Biosynthesis Process. Biotechnology for Biofuels, 11 (2018) 1–14. https://doi.org/10.1186/s13068-018-1222-9.
[14] L. Navone, T. McCubbin, R. A. Gonzalez-Garcia, L. K. Nielsen, & E. Marcellin, Genome-scale Model Guided Design of Propionibacterium for Enhanced Propionic Acid Production. Metabolic Engineering Communications, 6 (2018) 1–12. https://doi.org/10.1016/j.meteno.2017.11.001.
[15] F. F. Aburjaile, M. Rohmer, H. Parrinello, M. B. Maillard, E. Beaucher, G. Henry, A. Nicolas, M. N. Madec, A. Thierry, S. Parayre, S. M. Deutsch, M. Cocaign-Bousquet, A. Miyoshi, V. Azevedo, Y. Le Loir, & H. Falentin, Adaptation of Propionibacterium Freudenreichii to Long-Term Survival under Gradual Nutritional Shortage. BMC Genomics, 17 (2016) 1–13. https://doi.org/10.1186/s12864-016-3367-x.
[16] A. Zhang, J. Sun, Z. Wang, S. T. Yang, & H. Zhou, Effects of Carbon Dioxide on Cell Growth and Propionic Acid Production From Glycerol and Glucose by Propionibacterium Acidipropionici. Bioresource Technology, 175 (2015) 374–381. https://doi.org/10.1016/j.biortech.2014.10.046.
[17] T. Saraoui, S. Parayre, G. Guernec, V. Loux, J. Montfort, A. Cam, G. Boudry, G. Jan, & H. Falentin, A Unique In vivo Experimental Approach Reveals Metabolic Adaptation of The Probiotic Propionibacterium Freudenreichii to The Colon Environment. BMC Genomics, 14 (2013) 911–926. https://doi.org/10.1186/1471-2164-14-911.
[18] V. A. Boumba, V. Economou, N. Kourkoumelis, P. Gousia, C. Papadopoulou, & T. Vougiouklakis, Microbial Ethanol Production: Experimental Study and Multivariate Evaluation. Forensic Science International, 215 (2012) 189–198. https://doi.org/10.1016/j.forsciint.2011.03.003.
[19] A. Thierry, S. M. Deutsch, H. Falentin, M. Dalmasso, F. J. Cousin, & G. Jan, New Insights into Physiology and Metabolism of Propionibacterium Freudenreichii. International Journal of Food Microbiology, 149 (2011) 19–27. https://doi.org/10.1016/j.ijfoodmicro.2011.04.026.
[20] X. Christodoulou & S. B. Velasquez-Orta, Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO. Environmental Science and Technology, 50 (2016) 11234–11242. https://doi.org/10.1021/acs.est.6b02101.
[21] A. M. El-Nahas, L. A. Heikal, A. H. Mangood, & E. S. E. El-Shereefy, Structures and Energetics of Unimolecular Thermal Degradation of Isopropyl Butanoate as A Model Biofuel: Density Functional Theory and AB Initio Studies. Journal of Physical Chemistry A, 114 (2010) 7996–8002. https://doi.org/10.1021/jp103397f.
[22] B. Andreeen & A. Steinbüchel, Biotechnological Conversion of Glycerol to 2-Amino-1,3-Propanediol (Serinol) in Recombinant Escherichia coli. Applied Microbiology and Biotechnology, 93 (2012) 357–365. https://doi.org/10.1007/s00253-011-3364-6.
[23] Y. Soma, K. Tsuruno, M. Wada, A. Yokota, & T. Hanai, Metabolic Flux Redirection from A Central Metabolic Pathway toward A Synthetic Pathway Using A Metabolic Toggle Switch. Metabolic Engineering, 23 (2014) 175–184. https://doi.org/10.1016/j.ymben.2014.02.008.
[24] T. Horinouchi, A. Sakai, H. Kotani, K. Tanabe, & C. Furusawa, Improvement of Isopropanol Tolerance of Escherichia Coli Using Adaptive Laboratory Evolution and Omics Technologies. Journal of Biotechnology, 255 (2017) 47–56. https://doi.org/10.1016/j.jbiotec.2017.06.408.
[25] M. Majone & M. Reis, Editorial. New Biotechnology, 31 (2014) 255–256. https://doi.org/10.1016/j.nbt.2014.04.007.
[26] S. Dusséaux, C. Croux, P. Soucaille, & I. Meynial-Salles, Metabolic engineering of Clostridium Acetobutylicum ATCC 824 for The High-Yield Production of A Biofuel Composed of An Isopropanol/Butanol/Ethanol Mixture. Metabolic Engineering, 18 (2013) 1–8. https://doi.org/10.1016/j.ymben.2013.03.003.
[27] B. Ince, G. Koksel, Z. Cetecioglu, N. A. Oz, H. Coban, & O. Ince, Inhibition Effect of Isopropanol on Acetyl-Coa Synthetase Expression Level of Acetoclastic Methanogen, Methanosaeta Concilii. Journal of Biotechnology, 156 (2011) 95–99. https://doi.org/10.1016/j.jbiotec.2011.08.021.
[28] Y. Deng, A. B. Fisher, & S. S. Fong, Systematic Analysis of Intracellular Mechanisms of Propanol Production in The Engineered Thermobifida Fusca B6 Strain. Applied Microbiology and Biotechnology, 99 (2015) 8089–8100. https://doi.org/10.1007/s00253-015-6850-4.
[29] K. Srirangan, X. Liu, A. Westbrook, L. Akawi, M. E. Pyne, M. Moo-Young, & C. P. Chou, Biochemical, Genetic, and Metabolic Engineering Strategies to Enhance Coproduction of 1-Propanol and Ethanol in Engineered Escherichia coli. Applied Microbiology and Biotechnology, 98 (2014) 9499–9515. https://doi.org/10.1007/s00253-014-6093-9.
[30] R. Jain & Y. Yan, Dehydratase Mediated 1-Propanol Production in Metabolically Engineered Escherichia coli. Microbial Cell Factories, 10 (2011) 1–10. https://doi.org/10.1186/1475-2859-10-97.
[31] M. Matsubara, N. Urano, S. Yamada, A. Narutaki, M. Fujii, & M. Kataoka, Fermentative Production of 1-Propanol From D-Glucose, L-Rhamnose and Glycerol Using Recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 122 (2016) 421–426. https://doi.org/10.1016/j.jbiosc.2016.03.011.
[32] V. Shestivska, K. Dryahina, J. Nunvář, K. Sovová, D. Elhottová, A. Nemec, D. Smith, & P. Španěl, Quantitative Analysis of Volatile Metabolites Released In vitro by Bacteria of The Genus Stenotrophomonas for Identification of Breath Biomarkers of Respiratory Infection in Cystic Fibrosis. Journal of Breath Research, 9 (2015) 027104-24. https://doi.org/10.1088/1752-7155/9/2/027104.
[33] T. Kusakabe, T. Tatsuke, K. Tsuruno, Y. Hirokawa, S. Atsumi, J. C. Liao, & T. Hanai, Engineering A Synthetic Pathway in Cyanobacteria for Isopropanol Production Directly from Carbon Dioxide and Light. Metabolic Engineering, 20 (2013) 101–108. https://doi.org/10.1016/j.ymben.2013.09.007.
[34] S. Obruca, I. Marova, O. Snajdar, L. Mravcova, & Z. Svoboda, Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus Necator from Waste Rapeseed Oil Using Propanol as A Precursor Of 3-Hydroxyvalerate. Biotechnology Letters, 32 (2010) 1925–1932. https://doi.org/10.1007/s10529-010-0376-8.
[35] S. I. Pavlova, L. Jin, S. R. Gasparovich, & L. Tao, Multiple Alcohol Dehydrogenases but No Functional Acetaldehyde Dehydrogenase Causing Excessive Acetaldehyde Production from Ethanol by Oral Streptococci. Microbiology (United Kingdom), 159 (2013) 1437–1446. https://doi.org/10.1099/mic.0.066258-0.
[36] R. A. Gonzalez-Garcia, T. McCubbin, A. Wille, M. Plan, L. K. Nielsen, & E. Marcellin, Awakening Sleeping Beauty: Production of Propionic Acid in Escherichia Coli through The SBM Operon Requires The Activity of A Methylmalonyl-Coa Epimerase. Microbial Cell Factories, 16 (2017) 1–14. https://doi.org/10.1186/s12934-017-0735-4.
[37] S. P. Liu, L. Zhang, J. Mao, Z. Y. Ding, & G. Y. Shi, Metabolic Engineering of Escherichia Coli for The Production of Phenylpyruvate Derivatives. Metabolic Engineering, 32 (2015) 55–65. https://doi.org/10.1016/j.ymben.2015.09.007.
[38] R. Fasan, N. C. Crook, M. W. Peters, P. Meinhold, T. Buelter, M. Landwehr, P. C. Cirino, & F. H. Arnold, Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using Engineered Escherichia coli. Biotechnology and Bioengineering, 108 (2011) 500–510. https://doi.org/10.1002/bit.22984.
[39] Q. Guo, J. Chu, Y. Zhuang, & Y. Gao, Controlling The Feed Rate of Propanol to Optimize Erythromycin Fermentation by On-Line Capacitance and Oxygen uptake Rate Measurement. Bioprocess and Biosystems Engineering, 39 (2016) 255–265. https://doi.org/10.1007/s00449-015-1509-1.
[40] Y. Hirokawa, I. Suzuki, & T. Hanai, Optimization of Isopropanol Production by Engineered Cyanobacteria with A Synthetic Metabolic Pathway. Journal of Bioscience and Bioengineering, 119 (2015) 585–590. https://doi.org/10.1016/j.jbiosc.2014.10.005.
[41] Y. Hirokawa, Y. Dempo, E. Fukusaki, & T. Hanai, Metabolic engineering for Isopropanol Production by An Engineered Cyanobacterium, Synechococcus Elongatus PCC 7942, under Photosynthetic Conditions. Journal of Bioscience and Bioengineering, 123 (2017) 39–45. https://doi.org/10.1016/j.jbiosc.2016.07.005.
[42] N. Urano, M. Fujii, H. Kaino, M. Matsubara, & M. Kataoka, Fermentative Production of 1-Propanol from Sugars Using Wild-Type and Recombinant Shimwellia Blattae. Applied Microbiology and Biotechnology, 99 (2014) 2001–2008. https://doi.org/10.1007/s00253-014-6330-2.
[43] S. Arai, K. Hayashihara, Y. Kanamoto, K. Shimizu, Y. Hirokawa, T. Hanai, A. Murakami, & H. Honda, Alcohol-Tolerant Mutants of Cyanobacterium Synechococcus Elongatus PCC 7942 Obtained by Single-Cell Mutant Screening System. Biotechnology and Bioengineering, 114 (2017) 1771–1778. https://doi.org/10.1002/bit.26307.
[44] E. M. Ammar, Z. Wang, & S. T. Yang, Metabolic Engineering of Propionibacterium Freudenreichii for N-Propanol Production. Applied Microbiology and Biotechnology, 97 (2013) 4677–4690. https://doi.org/10.1007/s00253-013-4861-6.
[45] K. Liu, H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins, & R. L. Huhnke, Continuous Syngas Fermentation for The Production of Ethanol, N-Propanol and N-Butanol. Bioresource Technology, 151 (2014) 69–77. https://doi.org/10.1016/j.biortech.2013.10.059.
[46] C. R. Shen & J. C. Liao, Synergy As Design Principle for Metabolic Engineering of 1-Propanol Production in Escherichia coli. Metabolic Engineering, 17 (2013) 12–22. https://doi.org/10.1016/j.ymben.2013.01.008.
[47] Y. Chen, M. Huang, Z. Wang, J. Chu, Y. Zhuang, & S. Zhang, Controlling The Feed Rate of Glucose and Propanol for The Enhancement of Erythromycin Production and Exploration of Propanol Metabolism Fate by Quantitative Metabolic Flux Analysis. Bioprocess and Biosystems Engineering, 36 (2013) 1445–1453. https://doi.org/10.1007/s00449-013-0883-9.
[48] T. Hanai, S. Atsumi, & J. C. Liao, Engineered Synthetic Pathway for Isopropanol Production in Escherichia coli. Applied and Environmental Microbiology, 73 (2007) 7814–7818. https://doi.org/10.1128/AEM.01140-07.
[49] H. Tamakawa, T. Mita, A. Yokoyama, S. Ikushima, & S. Yoshida, Metabolic Engineering of Candida Utilis for Isopropanol Production. Applied Microbiology and Biotechnology, 97 (2013) 6231–6239. https://doi.org/10.1007/s00253-013-4964-0.
[50] Y. Soma, K. Inokuma, T. Tanaka, C. Ogino, A. Kondo, M. Okamoto, & T. Hanai, Direct Isopropanol Production from Cellobiose by Engineered Escherichia coli Using A Synthetic Pathway and A Cell Surface Display System. Journal of Bioscience and Bioengineering, 114 (2012) 80–85. https://doi.org/10.1016/j.jbiosc.2012.02.019.
[51] H. Graber & H. J. La Roche, Mutations Responsible for Alcohol Tolerance in The Mutant of Synechococcus elongatus PCC 7942 (SY1043) Obtained by Single-Cell Screening System. Bell Labs Technical Journal, 8 (2003) 111–127. https://doi.org/10.1016/j.jbiosc.2017.11.012.
[52] B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, & F. Sen, Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A Superior Catalyst for The Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 43 (2018) 17984–17992. https://doi.org/10.1016/j.ijhydene.2018.07.122.
[53] S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343. https://doi.org/10.1016/j.ijhydene.2017.11.051.
[54] S. Eris, Z. Daşdelen, & F. Sen, Enhanced Electrocatalytic Activity and Stability of Monodisperse Pt Nanocomposites for Direct Methanol Fuel Cells. Journal of Colloid and Interface Science, 513 (2018) 767–773. https://doi.org/10.1016/j.jcis.2017.11.085.
[55] B. Şen, E. H. Akdere, A. Şavk, E. Gültekin, Ö. Paralı, H. Göksu, & F. Şen, A Novel Thiocarbamide Functionalized Graphene Oxide Supported Bimetallic Monodisperse Rh-Pt Nanoparticles (RhPt/TC@GO NPs) for Knoevenagel Condensation of Aryl Aldehydes together with Malononitrile. Applied Catalysis B: Environmental, 225 (2018) 148–153. https://doi.org/10.1016/j.apcatb.2017.11.067.
[56] S. Eris, Z. Daşdelen, & F. Sen, Investigation of Electrocatalytic Activity and Stability of Pt@f-VC Catalyst Prepared by In-Situ Synthesis for Methanol Electrooxidation. International Journal of Hydrogen Energy, 43 (2018) 385–390. https://doi.org/10.1016/j.ijhydene.2017.11.063.
[57] B. Şen, B. Demirkan, M. Levent, A. Şavk, & F. Şen, Silica-based Monodisperse PdCo Nanohybrids as Highly Efficient and Stable Nanocatalyst for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 43 (2018) 20234–20242. https://doi.org/10.1016/j.ijhydene.2018.07.080.
[58] Y. Koskun, A. Şavk, B. Şen, & F. Şen, Highly Sensitive Glucose Sensor Based on Monodisperse Palladium Nickel/Activated Carbon Nanocomposites. Analytica Chimica Acta, 1010 (2018) 37–43. https://doi.org/10.1016/j.aca.2018.01.035.
[59] B. Şen, A. Aygün, A. Şavk, S. Akocak, & F. Şen, Bimetallic Palladium–Iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 43 (2018) 20183–20191. https://doi.org/10.1016/j.ijhydene.2018.07.081.
[60] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, & F. Şen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst For Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature. Journal of Colloid and Interface Science, 530 (2018) 321–327. https://doi.org/10.1016/j.jcis.2018.06.100.
[61] B. Sen, A. Şavk, & F. Sen, Highly Efficient Monodisperse Pt Nanoparticles Confined in The Carbon Black Hybrid Material for Hydrogen Liberation. Journal of Colloid and Interface Science, 520 (2018) 112–118. https://doi.org/10.1016/j.jcis.2018.03.004.
[62] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, & F. Sen, Highly Efficient Polymer Supported Monodisperse Ruthenium-Nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane. Journal of Colloid and Interface Science, 526 (2018) 480–486. https://doi.org/10.1016/j.jcis.2018.05.021.
[63] B. Sen, B. Demirkan, B. Şimşek, A. Savk, & F. Sen, Monodisperse Palladium Nanocatalysts for Dehydrocoupling of Dimethylamineborane. Nano-Structures and Nano-Objects, 16 (2018) 209–214. https://doi.org/10.1016/j.nanoso.2018.07.008.
[64] B. Şen, B. Demirkan, A. Savk, R. Kartop, M. S. Nas, M. H. Alma, S. Sürdem, & F. Şen, High-Performance Graphite-Supported Ruthenium Nanocatalyst for Hydrogen Evolution Reaction. Journal of Molecular Liquids, 268 (2018) 807–812. https://doi.org/10.1016/j.molliq.2018.07.117.
[65] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, & F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 3 (2018) 2–8. https://doi.org/10.1016/j.ijhydene.2018.03.175.
[66] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, & M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect, 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
[67] G. Başkaya, Y. Yıldız, A. Savk, T. O. Okyay, S. Eriş, H. Sert, & F. Şen, Rapid, Sensitive, and Reusable Detection of Glucose by Highly Monodisperse Nickel Nanoparticles Decorated Functionalized Multi-Walled Carbon Nanotubes. Biosensors and Bioelectronics, 91 (2017) 728–733. https://doi.org/10.1016/j.bios.2017.01.045.
[68] F. R. Bengelsdorf, A. Poehlein, S. Linder, C. Erz, T. Hummel, S. Hoffmeister, R. Daniel, & P. Dürre, Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Frontiers in Microbiology, 7 (2016) 1–15. https://doi.org/10.3389/fmicb.2016.01036.
[69] B. M. L. Raun & N. B. Kristensen, Metabolic Effects of Feeding Ethanol or Propanol to Postpartum Transition Holstein Cows. Journal of Dairy Science, 94 (2011) 2566–2580. https://doi.org/10.3168/jds.2010-3999.
[70] C. Jun, Y. Xue, R. Liu, & M. Wang, Study on The Toxic Interaction of Methanol, Ethanol and Propanol against The Bovine Hemoglobin (BHb) on Molecular Level. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 79 (2011) 1406–1410. https://doi.org/10.1016/j.saa.2011.04.076.
[71] J. Li, F. Che, Y. Pang, C. Zou, J. Y. Howe, T. Burdyny, J. P. Edwards, Y. Wang, F. Li, Z. Wang, P. De Luna, C.-T. Dinh, T.-T. Zhuang, M. I. Saidaminov, S. Cheng, T. Wu, Y. Z. Finfrock, L. Ma, S.-H. Hsieh, Y.-S. Liu, G. A. Botton, W.-F. Pong, X. Du, J. Guo, T.-K. Sham, E. H. Sargent, & D. Sinton, Copper Adparticle Enabled Selective Electrosynthesis of n-Propanol. Nature Communications, 9 (2018) 4614–4623. https://doi.org/10.1038/s41467-018-07032-0.