Microbial Fuel Cell for the Treatment of Wastewater
Dibyajyoti Haldar, Mriganka Sekhar Manna, Dwaipayan Sen, Tridib Kumar Bhowmick, Kalyan Gayen
A microbial fuel cell is a potential alternative for the treatment of wastewater. In this process of water treatment, a substantial amount of energy is produced. Microorganisms are explicitly used in microbial fuel cells to generate electrons and protons that are involved in electrochemical reactions for the treatment of wastewater for the generation of power. Moreover, the efficiency of the treatment process and also the generation of power largely depend on the nature of the substrates used as feed, types of the microorganism used and the configurations of the cells. In view of an effective treatment process, various types of wastewater originated from a number of different sources have extensively been treated in microbial fuel cells using electrogenic microorganisms. Environment-friendly features of microbial fuel cells result in a better technology compared to the existing ones for the purpose. The present chapter of this book comprehensively briefs on the reactions mechanisms involved in different aspects of the technique and discusses extensively the essential changes in the treatment techniques of wastewater from varied sources.
Keywords
Wastewater, Microbial Fuel Cell, Cathode, Anode, COD, Power Density
Published online 2/21/2019, 18 pages
Citation: Dibyajyoti Haldar, Mriganka Sekhar Manna, Dwaipayan Sen, Tridib Kumar Bhowmick, Kalyan Gayen, Microbial Fuel Cell for the Treatment of Wastewater, Materials Research Foundations, Vol. 46, pp 289-306, 2019
DOI: https://dx.doi.org/10.21741/9781644900116-11
Part of the book on Microbial Fuel Cells
References
[1] D. Haldar, D. Sen, K. Gayen, A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison, Int. J. Green Energy 13 (2016) 1232-1253. https://doi.org/10.1080/15435075.2016.1181075
[2] D. Haldar, D. Sen, K. Gayen, Enzymatic hydrolysis of banana stems (Musa acuminata): Optimization of process parameters and inhibition characterization, Int. J. Green Energy 15 (2018) 406-413. https://doi.org/10.1080/15435075.2018.1467834
[3] R. Heede, N. Oreskes, Potential emissions of CO2 and methane from proved reserves of fossil fuels: An alternative analysis, Global Environmental Change 36 (2016) 12-20. https://doi.org/10.1016/j.gloenvcha.2015.10.005
[4] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (2012) 294. https://doi.org/10.1038/nature11475
[5] P. Hu, Y. Ouyang, L. Wu, L. Shen, Y. Luo, P. Christie, Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar, J. Environ. Sci. (China) 27 (2015) 225-231. https://doi.org/10.1016/j.jes.2014.05.048
[6] J.F. Wang, G.X. Wang, H. Wanyan, Treated wastewater irrigation effect on soil, crop and environment: wastewater recycling in the loess area of China, J. Environ. Sci. (China) 19 (2007) 1093-1099. https://doi.org/10.1016/S1001-0742(07)60178-8
[7] M. Sustarsic, Wastewater treatment: Understanding the activated sludge process, CEP Magazine, AIChE Publication, November 2009, pp. 26-29.
[8] P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review, Resour. Effic. Technol. 2 (2016) 175-184. https://doi.org/10.1016/j.reffit.2016.09.004
[9] M.C. Potter, Electrical effects accompanying the decomposition of organic compounds, Proc. R Soc Lond B Biol Sci. 84 (1911) 260-276. https://doi.org/10.1098/rspb.1911.0073
[10] B.H. Kim, I.S. Chang, G.M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol. 76 (2007) 485-494. https://doi.org/10.1007/s00253-007-1027-4
[11] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol. 40 (2006) 5181-5192. https://doi.org/10.1021/es0605016
[12] Y. Qiao, C. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composit as anode material for microbial fuel cells, J. Power Sources 170 (2007) 79-84. https://doi.org/10.1016/j.jpowsour.2007.03.048
[13] J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresour Technol. 102 (2011) 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019
[14] M. Zhou, M. Chi, J. Luo, H. He, T. Jin, An overview of electrode materials in microbial fuel cells, J. Power Sources 196 (2011) 4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
[15] W. Liu, S. Cheng, J. Guo, Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells, Appl. Surf. Sci. 320 (2014) 281–286. https://doi.org/10.1016/j.apsusc.2014.09.088
[16] Z. Changyong, P. Liang, Y. Jiang, X. Huang, Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode, J. Power Sourc. 273 (2015) 580-583. https://doi.org/10.1016/j.jpowsour.2014.09.129
[17] U. Schroder, J. Niessen, F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, Angew Chem. Int. Ed. Engl. 42 (2003) 2880-2883. https://doi.org/10.1002/anie.200350918
[18] T. Zhang, Y. Zeng, S. Chen, X. Ai, H. Yang, Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes, Electrochem. Commun. 9 (2007) 349-353. https://doi.org/10.1016/j.elecom.2006.09.025
[19] K. Watanabe, Recent developments in microbial fuel cell technologies for sustainable bioenergy, J. Biosci. Bioeng. 106 (2008) 528-536. https://doi.org/10.1263/jbb.106.528
[20] K. Scott, I. Cotlarciuc, I. Head, K.P. Katuri, D. Hall, J.B. Lakeman, D. Browning, Fuel cell power generation from marine sediments: Investigation of cathode materials, J. Chem. Technol. Biotechnol. 83 (2008) 1244-1254. https://doi.org/10.1002/jctb.1937
[21] S. Cheng, H. Liu, B.E. Logan, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol. 40 (2006) 364-369. https://doi.org/10.1021/es0512071
[22] M. Ma, S. You, G. Xiao-bo, Y. Dai, J. Zou, H. Fu, Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells, J. Power Sourc. 283 (2015) 74-83. https://doi.org/10.1016/j.jpowsour.2015.02.100
[23] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21 (2003) 1229-1232. https://doi.org/10.1038/nbt867
[24] T. Catal, K. Li, H. Bermek, H. Liu, Electricity production from twelve monosaccharides using microbial fuel cells, J. Power Sourc. 175 (2008) 196-200. https://doi.org/10.1016/j.jpowsour.2007.09.083
[25] M. Rahimnejad, A.A. Ghoreyshi, G.D. Najafpour, H. Younesi, M. Shakeri, A novel microbial fuel cell stack for continuous production of clean energy, Int. J. Hydrogen Energ. 37 (2012) 5992-6000. https://doi.org/10.1016/j.ijhydene.2011.12.154
[26] Q. Yang, X. Wang, Y. Feng, H. Lee, J. Liu, X. Shi, Y. Qu, N. Ren, Electricity generation using eight amino acids by air–cathode microbial fuel cells, Fuel 102 (2012) 478-482. https://doi.org/10.1016/j.fuel.2012.04.020
[27] H. Liu, S. Cheng, B.E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol. 39 (2005) 658-662. https://doi.org/10.1021/es048927c
[28] P.D. Kiely, G. Rader, J.M. Regan, B.E. Logan, Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts, Bioresour. Technol. 102 (2011) 361-366. https://doi.org/10.1016/j.biortech.2010.05.017
[29] S. Venkata Mohan, G. Mohanakrishna, P.N. Sarma, Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell, Bioresour. Technol. 101 (2010) 970-976. https://doi.org/10.1016/j.biortech.2009.09.005
[30] B. Jin, H.J. van Leeuwen, B. Patel, H.W. Doelle, Q. Yu, Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater, Process Biochem. 34 (1999) 59-65. https://doi.org/10.1016/S0032-9592(98)00069-7
[31] R. Jamuna, S.V. Ramakrishna, SCP production and removal of organic load from cassava starch industry waste by yeasts, J. Ferment. Bioeng. 67 (1989) 126-131. https://doi.org/10.1016/0922-338X(89)90193-1
[32] T. Sangeetha, M. Muthukumar, Catholyte performance as an influencing factor on electricity production in a dual-chambered microbial fuel cell employing food processing wastewater, Energy Sources Part A 33 (2011) 1514-1522. https://doi.org/10.1080/15567030903397966
[33] N. Lu, S.-g. Zhou, L. Zhuang, J.-t. Zhang, J.-r. Ni, Electricity generation from starch processing wastewater using microbial fuel cell technology, Biochem. Eng. J. 43 (2009) 246-251. https://doi.org/10.1016/j.bej.2008.10.005
[34] S. Oh, B.E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Water Res. 39 (2005) 4673-4682. https://doi.org/10.1016/j.watres.2005.09.019
[35] B.K. Ince, O. Ince, P.J. Sallis, G.K. Anderson, Inert COD production in a membrane anaerobic reactor treating brewery wastewater, Water Res. 34 (2000) 3943-3948. https://doi.org/10.1016/S0043-1354(00)00170-6
[36] W. Parawira, I. Kudita, M.G. Nyandoroh, R. Zvauya, A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge, Process Biochem. 40 (2005) 593-599. https://doi.org/10.1016/j.procbio.2004.01.036
[37] Y. Feng, X. Wang, B.E. Logan, H. Lee, Brewery wastewater treatment using air-cathode microbial fuel cells, Appl. Microbiol. Biotechnol. 78 (2008) 873-880. https://doi.org/10.1007/s00253-008-1360-2
[38] Q. Wen, Y. Wu, L. Zhao, Q. Sun, Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell, Fuel 89 (2010) 1381-1385. https://doi.org/10.1016/j.fuel.2009.11.004
[39] T. Pepe Sciarria, G. Merlino, B. Scaglia, A. D’Epifanio, B. Mecheri, S. Borin, S. Licoccia, F. Adani, Electricity generation using white and red wine lees in air cathode microbial fuel cells, J. Power Sourc. 274 (2015) 393-399. https://doi.org/10.1016/j.jpowsour.2014.10.050
[40] E.V. Ramasamy, S.A. Abbasi, Energy recovery from dairy waste-waters: impacts of biofilm support systems on anaerobic CST reactors, Appl. Energy 65 (2000) 91-98. https://doi.org/10.1016/S0306-2619(99)00079-3
[41] M. Mahdi Mardanpour, M. Nasr Esfahany, T. Behzad, R. Sedaqatvand, Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment, Biosens. Bioelectron. 38 (2012) 264-269. https://doi.org/10.1016/j.bios.2012.05.046
[42] J. Kassongo, C.A. Togo, Performance improvement of whey-driven microbial fuel cells by acclimation of indigenous anodophilic microbes, Afr. J. Biotechnol. 10 (2011) 7846-7852. https://doi.org/10.5897/AJB11.206
[43] A. Tremouli, G. Antonopoulou, S. Bebelis, G. Lyberatos, Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads, Bioresour. Technol. 131 (2013) 380-389. https://doi.org/10.1016/j.biortech.2012.12.173
[44] Q. Wen, F. Kong, H. Zheng, D. Cao, Y. Ren, J. Yin, Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell, Chem. Eng. J. 168 (2011) 572-576. https://doi.org/10.1016/j.cej.2011.01.025
[45] L. Zhang, X. Yin, S.F.Y. Li, Bio-electrochemical degradation of paracetamol in a microbial fuel cell-fenton system, Chem. Eng. J. 276 (2015) 185-192. https://doi.org/10.1016/j.cej.2015.04.065
[46] R. Liu, C. Gao, Y.-G. Zhao, A. Wang, S. Lu, M. Wang, F. Maqbool, Q. Huang, Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells, Bioresour. Technol. 123 (2012) 86-91. https://doi.org/10.1016/j.biortech.2012.07.094
[47] K. Chandrasekhar, S. Venkata Mohan, Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration, Bioresour. Technol. 110 (2012) 517-525. https://doi.org/10.1016/j.biortech.2012.01.128
[48] S.K. Marashi, H.R. Kariminia, I.S. Savizi, Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell, Biotechnol. Lett. 35 (2013) 197-203. https://doi.org/10.1007/s10529-012-1063-8
[49] R.D. Cusick, P.D. Kiely, B.E. Logan, A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters, Int. J. Hydrogen Energ. 35 (2010) 8855-8861. https://doi.org/10.1016/j.ijhydene.2010.06.077
[50] H.-m. Jiang, S.-j. Luo, X.-s. Shi, M. Dai, R.-b. Guo, A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation, J. Cent. South Univ. 20 (2013) 488-494. https://doi.org/10.1007/s11771-013-1510-2
[51] T.P. Sciarria, A. Tenca, A. D’Epifanio, B. Mecheri, G. Merlino, M. Barbato, S. Borin, S. Licoccia, V. Garavaglia, F. Adani, Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell, Bioresour. Technol. 147 (2013) 246-253. https://doi.org/10.1016/j.biortech.2013.08.033
[52] H.C. Tao, T. Lei, G. Shi, X.N. Sun, X.Y. Wei, L.J. Zhang, W.M. Wu, Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis, J. Hazard. Mater. 264 (2014) 1-7. https://doi.org/10.1016/j.jhazmat.2013.10.057
[53] J. Huang, P. Yang, Y. Guo, K. Zhang, Electricity generation during wastewater treatment: An approach using an AFB-MFC for alcohol distillery wastewater, Desalination 276 (2011) 373-378. https://doi.org/10.1016/j.desal.2011.03.077
[54] X. Zheng, N. Nirmalakhandan, Cattle wastes as substrates for bioelectricity production via microbial fuel cells, Biotechnol. Lett. 32 (2010) 1809-1814. https://doi.org/10.1007/s10529-010-0360-3
[55] H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, N. Khanjani, Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell, J. Saudi Chem. Soc. 20 (2016) 88-100. https://doi.org/10.1016/j.jscs.2014.08.002
[56] H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, M.M. Amin, A. Rajabizadeh, N. Khanjani, Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing, Enzyme Microb. Technol. 52 (2013) 352-357. https://doi.org/10.1016/j.enzmictec.2013.03.004
[57] X. Guo, Y. Zhan, C. Chen, B. Cai, Y. Wang, S. Guo, Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel, Renew. Energ. 87 (2016) 437-444. https://doi.org/10.1016/j.renene.2015.10.041
[58] G. Velvizhi, S. Venkata Mohan, Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater, Int. J. Hydrogen Energ. 37 (2012) 5969-5978. https://doi.org/10.1016/j.ijhydene.2011.12.112
[59] M.M. Ghangrekar, V.B. Shinde, Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell, Water Sci. Technol. 58 (2008) 37-43. https://doi.org/10.2166/wst.2008.339
[60] X. Cao, H.L. Song, C.Y. Yu, X.N. Li, Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell, Bioresour. Technol. 189 (2015) 87-93. https://doi.org/10.1016/j.biortech.2015.03.148