Mesoporous Materials in Biofuel Cells

$20.00

Mesoporous Materials in Biofuel Cells

Mehmet Harbi Calimli, Mehmet Salih Nas, Hakan Burhan, Fatih Sen

In biological systems, the conversion of chemical energy into electrical energy exhibited the importance of biological fuel cells. Thus, studies on the use of microbes and enzymes in fuel cell devices have recently increased. Reduced fossil resources and damage to the environment have led to an increase in the search for new energy sources. Electric energy can be obtained by using microbial and enzymes in fuel cells. The efficiency and durability of the material to be used in cathodic and anodic electrodes enable the efficient use of the biofuel cell. It is very important to know the properties of the membrane materials that provide ion transfer between the cathode and the anode. So, the characteristics of the materials used in these fuel cells, which can be expressed as biological fuel cells, affect the energy efficiency. This chapter is aimed to report recent developments in microbial fuel cells, enzymatic fuel cells and carbon-based fuel cells and the materials used in these fuel cells.

Keywords
Biofuel Cells, Enzymatic Fuel Cells, Mesoporous Materials, Microbial Fuel Cells, Nanomaterials

Published online 2/21/2019, 16 pages

DOI: https://dx.doi.org/10.21741/9781644900079-7

Part of the book on Enzymatic Fuel Cells

References
[1]. A. ElMekawy, H. M. Hegab, D. Losic, C. P. Saint, & D. Pant, Applications of Graphene in Microbial Fuel Cells: The Gap between Promise and Reality. Renewable and Sustainable Energy Reviews, 72 (2017) 1389–1403. https://doi.org/10.1016/j.rser.2016.10.044.
[2]. K. Zhang, L. L. Zhang, X. S. Zhao, & J. Wu, Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 22 (2010) 1392–1401. https://doi.org/10.1021/cm902876u.
[3]. M. Chan Sin, S. N. Gan, M. S. Mohd Annuar, & I. K. Ping Tan, Thermodegradation of Medium-Chain-Length Poly(3-Hydroxyalkanoates) Produced by Pseudomonas Putida from Oleic Acid. Polymer Degradation and Stability, 95 (2010) 2334–2342. https://doi.org/10.1016/j.polymdegradstab.2010.08.027.
[4]. A. Parmar, N. K. Singh, A. Pandey, E. Gnansounou, & D. Madamwar, Cyanobacteria and Microalgae: A Positive Prospect for Biofuels. Bioresource Technology, 102 (2011) 10163–10172. https://doi.org/10.1016/j.biortech.2011.08.030.
[5]. E. M. Ahmed, Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research, 6 (2015) 105–121. https://doi.org/10.1016/j.jare.2013.07.006.
[6]. D. R. Lovley, Bug juice: Harvesting Electricity with Microorganisms. Nature Reviews Microbiology, 4 (2006) 497–508. https://doi.org/10.1038/nrmicro1442.
[7]. Y. Hindatu, M. S. M. Annuar, & A. M. Gumel, Mini-review: Anode Modification for Improved Performance of Microbial Fuel Cell. Renewable and Sustainable Energy Reviews, 73 (2017) 236–248. https://doi.org/10.1016/j.rser.2017.01.138.
[8]. L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, & Z. Wang, Advances in Microbial Fuel Cells for Wastewater Treatment. Renewable and Sustainable Energy Reviews, 71 (2017) 388–403. https://doi.org/10.1016/j.rser.2016.12.069.
[9]. M. H. Do, H. H. Ngo, W. S. Guo, Y. Liu, S. W. Chang, D. D. Nguyen, L. D. Nghiem, & B. J. Ni, Challenges in The Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review. Science of The Total Environment, 639 (2018) 910–920. https://doi.org/10.1016/j.scitotenv.2018.05.136.
[10]. G. Hernández-Flores, H. M. Poggi-Varaldo, O. Solorza-Feria, M. T. Ponce-Noyola, T. Romero-Castañón, N. Rinderknecht-Seijas, & J. Galíndez-Mayer, Characteristics of A Single Chamber Microbial Fuel Cell Equipped with A Low Cost Membrane. International Journal of Hydrogen Energy, 40 (2015) 17380–17387. https://doi.org/10.1016/j.ijhydene.2015.10.024.
[11]. J. L. Brown, Fuel Cells Treat Wastewater, Generate Electricity. Civil Engineering Magazine Archive, 82 (2012) 34–35. https://doi.org/10.1061/ciegag.0000643.
[12]. G. G. kumar, V. G. S. Sarathi, & K. S. Nahm, Recent Advances and Challenges in The Anode Architecture and Their Modifications for The Applications of Microbial Fuel Cells. Biosensors and Bioelectronics, 43 (2013) 461–475. https://doi.org/10.1016/j.bios.2012.12.048.
[13]. E. Flahaut, M. C. Durrieu, M. Remy-Zolghadri, R. Bareille, & C. Baquey, Study of The Cytotoxicity of CCVD Carbon Nanotubes. Journal of Materials Science, 41 (2006) 2411–2416. https://doi.org/10.1007/s10853-006-7069-7.
[14]. Y. Yıldız, E. Erken, H. Pamuk, H. Sert, & F. Şen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5951–5958. https://doi.org/10.1166/jnn.2016.11710.
[15]. S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, & F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst. Nano-Structures and Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002.
[16]. N. Neuberger, H. Adidharma, & M. Fan, Graphene: A Review of Applications in The Petroleum Industry. Journal of Petroleum Science and Engineering, 167 (2018) 152–159. https://doi.org/10.1016/j.petrol.2018.04.016.
[17]. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, & S. Seal, Graphene Based Materials: Past, Present and Future. Progress in Materials Science, 56 (2011) 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003.
[18]. P. R. Somani, S. P. Somani, & M. Umeno, Planer Nano-Graphenes from Camphor by CVD. Chemical Physics Letters, 430 (2006) 56–59. https://doi.org/10.1016/j.cplett.2006.06.081.
[19]. M. Rasmussen, S. Abdellaoui, & S. D. Minteer, Enzymatic Biofuel Cells: 30 Years of Critical Advancements. Biosensors and Bioelectronics, 76 (2016) 91–102. https://doi.org/10.1016/j.bios.2015.06.029.
[20]. E. Simon, C. M. Halliwell, C. S. Toh, A. E. G. Cass, & P. N. Bartlett, Immobilisation of Enzymes on Poly(Aniline)-Poly(Anion) Composite Films. Preparation of Bioanodes for Biofuel Cell Applications. Bioelectrochemistry, 55 (2002) 13–15. https://doi.org/10.1016/S1567-5394(01)00160-8.
[21]. D. Leech, P. Kavanagh, & W. Schuhmann, Enzymatic Fuel Cells: Recent Progress. Electrochimica Acta, 84 (2012) 223–234. https://doi.org/10.1016/j.electacta.2012.02.087.
[22]. N. Mano & L. Edembe, Bilirubin Oxidases in Bioelectrochemistry: Features and Recent Findings. Biosensors and Bioelectronics, 50 (2013) 478–485. https://doi.org/10.1016/j.bios.2013.07.014.
[23]. E. Nazaruk, K. Sadowska, J. F. Biernat, J. Rogalski, G. Ginalska, & R. Bilewicz, Enzymatic Electrodes Nanostructured with Functionalized Carbon Nanotubes for Biofuel Cell Applications. Analytical and Bioanalytical Chemistry, 398 (2010) 1651–1660. https://doi.org/10.1007/s00216-010-4012-1.
[24]. A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, & S. Cosnier, Mediatorless High-Power Glucose Biofuel Cells Based on Compressed Carbon Nanotube-Enzyme Electrodes. Nature Communications, 2 (2011) 370–376. https://doi.org/10.1038/ncomms1365.
[25]. S. Cosnier, A. J. Gross, A. Le Goff, & M. Holzinger, Recent advances on Enzymatic Glucose/Oxygen and Hydrogen/Oxygen Biofuel Cells: Achievements and Limitations. Journal of Power Sources, 325 (2016) 252–263. https://doi.org/10.1016/j.jpowsour.2016.05.133.
[26]. R. Ludwig, W. Harreither, F. Tasca, & L. Gorton, Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. ChemPhysChem, 11 (2010) 2674–2697. https://doi.org/10.1002/cphc.201000216.
[27]. A. Christenson, N. Dimcheva, E. E. Ferapontova, L. Gorton, T. Ruzgas, L. Stoica, S. Shleev, A. I. Yaropolov, D. Haltrich, R. N. F. Thorneley, & S. D. Aust, Direct Electron Transfer Between Ligninolytic Redox Enzymes and Electrodes. Electroanalysis, 16 (2004) 1074–1092. https://doi.org/10.1002/elan.200403004.
[28]. R. A. Marcus & N. Sutin, Electron Transfers in Chemistry and Biology. Biochimica et Biophysica Acta (BBA) – Reviews on Bioenergetics, 811 (1985) 265–322. https://doi.org/10.1016/0304-4173(85)90014-X.
[29]. A. G. Fane, C. Y. Tang, & R. Wang, Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. Treatise on Water Science, 4 (2010) 301–335. https://doi.org/10.1016/B978-0-444-53199-5.00091-9.
[30]. Z. Yang, X.-H. Ma, & C. Y. Tang, Recent Development of Novel Membranes for Desalination. Desalination, 434 (2018) 37–59. https://doi.org/10.1016/j.desal.2017.11.046.
[31]. U. R. Farooqui, A. L. Ahmad, & N. A. Hamid, Graphene oxide: A Promising Membrane Material for Fuel Cells. Renewable and Sustainable Energy Reviews, 82 (2018) 714–733. https://doi.org/10.1016/j.rser.2017.09.081.
[32]. A. A. Babadi, S. Bagheri, & S. B. A. Hamid, Progress on Implantable Biofuel Cell: Nano-Carbon Functionalization for Enzyme Immobilization Enhancement. Biosensors and Bioelectronics, 79 (2016) 850–860. https://doi.org/10.1016/j.bios.2016.01.016.
[33]. M. J. Cliffe, J. A. Hill, C. A. Murray, F.-X. Coudert, & A. L. Goodwin, Freestanding Redox Buckypaper Electrodes from Multi-Wall Carbon Nanotubes For Bioelectrocatalytic Oxygen Reduction via Mediated Electron Transfer. Chemical Science, 12 (2015) 6397–6406. https://doi.org/10.1039/b000000x.
[34]. S. Wang, R. Downes, C. Young, D. Haldane, A. Hao, R. Liang, B. Wang, C. Zhang, & R. Maskell, Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: Manufacturing Process and Tensile Properties. Advanced Engineering Materials, 17 (2015) 1442–1453. https://doi.org/10.1002/adem.201500034.
[35]. F. Fischer, Photoelectrode, Photovoltaic and Photosynthetic Microbial Fuel Cells. Renewable and Sustainable Energy Reviews, 90 (2018) 16–27. https://doi.org/10.1016/j.rser.2018.03.053.
[36]. C. Schulz, R. Kittl, R. Ludwig, & L. Gorton, Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes. ACS Catalysis, 6 (2016) 555–563. https://doi.org/10.1021/acscatal.5b01854.
[37]. Z. Daşdelen, Y. Yıldız, S. Eriş, & F. Şen, Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction. Applied Catalysis B: Environmental, 219 (2017) 511–516. https://doi.org/10.1016/j.apcatb.2017.08.014.
[38]. H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, & F. Sen, Eco-Friendly Hydrogenation of Aromatic Aldehyde Compounds by Tandem Dehydrogenation of Dimethylamine-Borane in The Presence of A Reduced Graphene Oxide Furnished Platinum Nanocatalyst. Catalysis Science & Technology, 6 (2016) 2318–2324. https://doi.org/10.1039/C5CY01462J.
[39]. H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, & F. Şen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect, 1 (2016) 953–958. https://doi.org/10.1002/slct.201600207.
[40]. B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, & M. Kaya, One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New Journal of Chemistry, 40 (2016) 748–754. https://doi.org/10.1039/c5nj02098k.
[41]. S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, & F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles. Analytica Chimica Acta, 989 (2017) 88–94. https://doi.org/10.1016/j.aca.2017.07.051.
[42]. B. Aday, H. Pamuk, M. Kaya, & F. Sen, Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives. Journal of Nanoscience and Nanotechnology, 16 (2016) 6498–6504. https://doi.org/10.1166/jnn.2016.12432.
[43]. R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, & M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect, 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
[44]. B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, & F. Şen, Monodisperse Pt(0)/DPA@GO Nanoparticles as Highly Active Catalysts for Alcohol Oxidation and Dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41 (2016) 5661–5669. https://doi.org/10.1016/j.ijhydene.2016.02.061.
[45]. E. Erken, I. Esirden, M. Kaya, & F. Sen, A Rapid and Novel Method for The Synthesis of 5-Substituted 1H-Tetrazole Catalyzed by Exceptional Reusable Monodisperse Pt NPs@AC under The Microwave Irradiation. RSC Advances, 5 (2015) 68558–68564. https://doi.org/10.1039/c5ra11426h.
[46]. Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, & F. Sen, Enhanced Electrocatalytic Activity and Durability of Highly Monodisperse Pt@Ppy–PANI Nanocomposites as A Novel Catalyst for The Electro-Oxidation of Methanol. RSC Advances, 6 (2016) 50851–50857. https://doi.org/10.1039/C6RA06210E.
[47]. E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O. M. Kalfa, & F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Cluster Science, 27 (2016) 9–23. https://doi.org/10.1007/s10876-015-0892-8.
[48]. F. Sen, Y. Karatas, M. Gulcan, & M. Zahmakiran, Amylamine Stabilized Platinum(0) Nanoparticles: Active and Reusable Nanocatalyst in The Room Temperature Dehydrogenation of Dimethylamine-Borane. RSC Advances, 4 (2014) 1526–1531. https://doi.org/10.1039/c3ra43701a.
[49]. S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343. https://doi.org/10.1016/j.ijhydene.2017.11.051.
[50]. Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO as Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230.
[51]. Y. Yildiz, H. Pamuk, Ö. Karatepe, Z. Dasdelen, & F. Sen, Carbon Black Hybrid Material Furnished Monodisperse Platinum Nanoparticles as Highly Efficient and Reusable Electrocatalysts for Formic Acid Electro-Oxidation. RSC Advances, 6 (2016) 32858–32862. https://doi.org/10.1039/c6ra00232c.
[52]. E. Erken, Y. Yıldız, B. Kilbaş, & F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5944–5950. https://doi.org/10.1166/jnn.2016.11683.
[53]. B. Çelik, E. Erken, S. Eriş, Y. Yildiz, B. Şahin, H. Pamuk, & F. Sen, Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: The effect of The Surfactant on Their Catalytic Activities in Room Temperature Dehydrocoupling of DMAB. Catalysis Science and Technology, 6 (2016) 1685–1692. https://doi.org/10.1039/c5cy01371b.
[54]. B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, & F. Şen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. International Journal of Hydrogen Energy, 41 (2016) 3093–3101. https://doi.org/10.1016/j.ijhydene.2015.12.138.