Fuel Cell Electrochemistry

$20.00

Fuel Cell Electrochemistry

Fatma Aydin Unal, Hakan Burhan, Neslihan Karaman, Kubilay Arıkan, Bahar Simsek, Burcu Akyıldız, Fatih Şen

Fuel cells can be defined as devices which convert chemical energy into electrical energy. They have a potential capability for promising energy systems. Especially, as a clean and renewable energy source, fuel cells have very significant importance. There are many types of fuel cells such as alcohol, hydrogen, biofuel cells etc. This chapter examines the general electrochemistry of fuel cells. Furthermore, the basis of a fuel cell, fuel cell chemistry, substrates and potentials, electrochemistry, types of the electrode, potentiostats have been examined in detail. Besides, the electrochemistry characterization techniques, polarisation and power curves, microbial fuel cell and their reactions, limitations of the electrochemical reactions are also described in detail.

Keywords
Electrochemistry, Fuel Cell Electrochemistry, Microbial Fuel Cell, Fuel Cell Reaction

Published online 2/21/2019, 36 pages

DOI: https://dx.doi.org/10.21741/9781644900079-4

Part of the book on Enzymatic Fuel Cells

References
[1] C. Zuo, M. Liu, & M. Liu, Solid Oxide Fuel Cells. Sol-Gel Processing for Conventional and Alternative Energy (Boston, MA: Springer US, 2012), pp. 7–36. https://doi.org/10.1007/978-1-4614-1957-0_2.
[2] F. M. T. Student, Electricity Generation from Biowaste Based Microbial Fuel Cells. International Journal of Energy, Information and Communications, 1 (2010) 77–92. https://doi.org/10.1016/j.tibtech.2005.04.008.
[3] Z. Ghassemi & G. Slaughter, Biological Fuel Cells and Membranes. Membranes, 7 (2017) 1–12. https://doi.org/10.3390/membranes7010003.
[4] A. Baptista, I. Ferreira, & J. Borges, Cellulose-Based Bioelectronic Devices. Cellulose Medical, Pharmaceutical and Electronic Applications (InTech, 2013), pp. 67–82. https://doi.org/10.5772/56721.
[5] D. E. Edem, C. C. Opara, B. O. Evbuomwan, & B. C. Oforkansi, Effects of Novel Substrates in Electricity Generation in A Mediator-Less Microbial Fuel Cell. Greener Journal of Science, Engineering and Technological Research, 5 (2015) 011–019. https://doi.org/10.15580/GJSETR.2015.1.061715081.
[6] D. Oladejo, O. O. Shoewu, A. A. Yussouff, & H. Rapheal, Evaluation of Electricity Generation from Animal Based Wastes in A Microbial Fuel Cell. International Journal Of Scientific & Technology Research, 4 (2015) 85–90.
[7] A. DV & O. TM, Comparative Measure of Electricity Produced from Benthic Mud of FUTA North Gate and FUTA Juction in Akure, Ondo State, Using Microbial Fuel Cell. Innovative Energy & Research, 07 (2018) 1–4. https://doi.org/10.4172/2576-1463.1000180.
[8] S. D. Purswani, S. S. Atkare, G. Bhumkar, & M. B. Patil, Electricity Generation From Dairy Waste Water through Microbial Fuel Cell Technology. International Journal of Engineering Research and Reviews, 2 (2014) 24–32.
[9] L. Fan & S. Xue, Overview on Electricigens for Microbial Fuel Cell. The Open Biotechnology Journal, 10 (2016) 398–406. https://doi.org/10.2174/1874070701610010398.
[10] Z. Samec, Electrochemistry at The Interface Between Two Immiscible Electrolyte Solutions (IUPAC Technical Report). Pure and Applied Chemistry, 76 (2004) 2147–2180. https://doi.org/10.1351/pac200476122147.
[11] L. Pilon, H. Wang, & A. D’Entremont, Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of The Electrochemical Society, 162 (2015) A5158–A5178. https://doi.org/10.1149/2.0211505jes.
[12] J.-M. Monier, L. Niard, N. Haddour, B. Allard, & F. Buret, Microbial Fuel Cells: From Biomass (waste) to Electricity. Melecon 2008 – 14th IEEE Mediterr. Electrotech Conference (IEEE, 2008), pp. 663–668. https://doi.org/10.1109/MELCON.2008.4618511.
[13] A. Parkash, Microbial Fuel Cells: A Source of Bioenergy. Journal of Microbial & Biochemical Technology, 8 (2016) 247–255. https://doi.org/10.4172/1948-5948.1000293.
[14] Y. Qu, Y. Feng, X. Wang, & B. E. Logan, Use of A Coculture to Enable Current Production by Geobacter Sulfurreducens. Applied and Environmental Microbiology, 78 (2012) 3484–3487. https://doi.org/10.1128/AEM.00073-12.
[15] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, & S. E. Oh, Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review. Alexandria Engineering Journal, 54 (2015) 745–756. https://doi.org/10.1016/j.aej.2015.03.031.
[16] D. Khater, K. M. El-Khatib, M. Hazaa, & R. Y. A. Hassan, Activated Sludge-based Microbial Fuel Cell for Bio-electricity Generation. Journal of Basic and Environmental Sciences, 2 (2015) 63–73.
[17] R. P. Ramasamy, V. Gadhamshetty, L. J. Nadeau, & G. R. Johnson, Impedance Spectroscopy as A Tool for Non-Intrusive Detection of Extracellular Mediators in Microbial Fuel Cells. Biotechnology and Bioengineering, 104 (2009) 882–891. https://doi.org/10.1002/bit.22469.
[18] U. Schröder, Anaerobic Biodegradability of Complex Substrates: Performance And Stability at Mesophilic and Thermophilic Conditions. Physical Chemistry Chemical Physics, 9 (2007) 2619–2629. https://doi.org/10.1039/B703627M.
[19] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, & K. Rabaey, Microbial fuel cells: Methodology and Technology. Environmental Science and Technology, 40 (2006) 5181–5192. https://doi.org/10.1021/es0605016.
[20] A. Mallik & B. C. Ray, Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication. International Journal of Electrochemistry, 2011 (2011) 1–16. https://doi.org/10.4061/2011/568023.
[21] J. Lin, B. Shi, & Z. Chen, High-Performance Asymmetric Supercapacitors Based on the Surfactant/Ionic Liquid Complex Intercalated Reduced Graphene Oxide Composites. Applied Sciences, 8 (2018) 484. https://doi.org/10.3390/app8040484.
[22] J. Varghese, H. Wang, & L. Pilon, Simulating Electric Double Layer Capacitance of Mesoporous Electrodes with Cylindrical Pores. Journal of The Electrochemical Society, 158 (2011) A1106. https://doi.org/10.1149/1.3622342.
[23] P. Cancino, V. Paredes-García, J. Torres, S. Martínez, C. Kremer, & E. Spodine, Electrical Double Layer: Revisit Based on Boundary Conditions. Catalysis Science & Technology., 7 (2017) 4929–4933. https://doi.org/10.1039/C7CY01385J.
[24] K. Bohinc, V. Kralj-Iglič, & A. Iglič, Thickness of Electrical Double Layer. Effect of Ion Size. Electrochimica Acta, 46 (2001) 3033–3040. https://doi.org/10.1016/S0013-4686(01)00525-4.
[25] K. Fushimi, K. I. Takase, K. Azumi, & M. Seo, Current Transients of Passive Iron Observed During Micro-Indentation in Ph 8.4 Borate Buffer Solution. Electrochimica Acta, 51 (2006) 1255–1263. https://doi.org/10.1016/j.electacta.2005.06.016.
[26] G. Sun, A. Thygesen, M. T. Ale, M. Mensah, F. W. Poulsen, & A. S. Meyer, The Significance of The Initiation Process Parameters and Reactor Design for Maximizing The Efficiency of Microbial Fuel Cells. Applied Microbiology and Biotechnology, 98 (2014) 2415–2427. https://doi.org/10.1007/s00253-013-5486-5.
[27] P. M. Biesheuvel, Y. Fu, & M. Z. Bazant, Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes. Russian Journal of Electrochemistry, 48 (2012) 580–592. https://doi.org/10.1134/S1023193512060031.
[28] S. Al-Hilli & M. Willander, The Ph Response and Sensing Mechanism of N-Type Zno/Electrolyte Interfaces. Sensors, 9 (2009) 7445–7480. https://doi.org/10.3390/s90907445.
[29] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, & J. L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95 (2018) 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.
[30] T.-H. Le, Y. Kim, & H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9 (2017) 150. https://doi.org/10.3390/polym9040150.
[31] E. Tran, C. Grave, G. M. Whitesides, & M. A. Rampi, Controlling The Electron Transfer Mechanism in Metal-Molecules-Metal Junctions. Electrochimica Acta, 50 (2005) 4850–4856. https://doi.org/10.1016/j.electacta.2005.04.049.
[32] J. Babauta, R. Renslow, Z. Lewandowski, & H. Beyenal, Electrochemically Active Biofilms: Facts and Fiction. A review. Biofouling, 28 (2012) 789–812. https://doi.org/10.1080/08927014.2012.710324.
[33] S. Minteer & G. Brisard, Physical and Analytical Electrochemistry : The Fundamental Core of Electrochemistry. Electrochemical Society Interface, 15 (2006) 62–65.
[34] S. A. Ozkan, J.-M. Kauffmann, & P. Zuman, Electroanalysis in Biomedical and Pharmaceutical Sciences (Berlin, Heidelberg: Springer Berlin Heidelberg, 2015). https://doi.org/10.1007/978-3-662-47138-8.
[35] D. Pant, G. Van Bogaert, L. Diels, & K. Vanbroekhoven, A Review of The Substrates Used in Microbial Fuel Cells (MFCs) for Sustainable Energy Production. Bioresource Technology, 101 (2010) 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
[36] R. Kumar, L. Singh, & A. W. Zularisam, Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies Used to Improve It for Microbial Fuel Cell Applications. Renewable and Sustainable Energy Reviews, 56 (2016) 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029.
[37] V. G. Gude, Wastewater Treatment In Microbial Fuel Cells – An Overview. Journal of Cleaner Production, 122 (2016) 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022.
[38] A. V. Sokirko, General Problem of Limiting Diffusion-Migration Currents in A System With Ions of Three Arbitrary Charge Numbers. Journal of Electroanalytical Chemistry, 364 (1994) 51–62. https://doi.org/10.1016/0022-0728(93)02945-E.
[39] D. Baron, E. LaBelle, D. Coursolle, J. A. Gralnick, & D. R. Bond, Electrochemical Measurement of Electron Transfer Kinetics by Shewanella Oneidensis MR-1. Journal of Biological Chemistry, 284 (2009) 28865–28873. https://doi.org/10.1074/jbc.M109.043455.
[40] B. M. Setterfield-Price & R. A. W. Dryfe, The Influence of Electrolyte Identity upon The Electro-Reduction of CO2. Journal of Electroanalytical Chemistry, 730 (2014) 48–58. https://doi.org/10.1016/j.jelechem.2014.07.009.
[41] W. R. Fawcett & M. Opallo, The Kinetics of Heterogeneous Electron Transfer Reaction in Polar Solvents. Angewandte Chemie International Edition in English, 33 (1994) 2131–2143. https://doi.org/10.1002/anie.199421311.
[42] H. J. Wörner, C. A. Arrell, N. Banerji, A. Cannizzo, M. Chergui, A. K. Das, P. Hamm, U. Keller, P. M. Kraus, E. Liberatore, P. Lopez-Tarifa, M. Lucchini, M. Meuwly, C. Milne, J.-E. Moser, U. Rothlisberger, G. Smolentsev, J. Teuscher, J. A. van Bokhoven, & O. Wenger, Charge Migration and Charge Transfer in Molecular Systems. Structural Dynamics, 4 (2017) 061508. https://doi.org/10.1063/1.4996505.
[43] V. S. Gladkikh, A. I. Burshtein, H. L. Tavernier, & M. D. Fayer, Influence of Diffusion on The Kinetics of Donor-Acceptor Electron Transfer Monitored by The Quenching of Donor Fluorescence. Journal of Physical Chemistry A, 106 (2002) 6982–6990. https://doi.org/10.1021/jp0207228.
[44] N. K. Bhatti, M. S. Subhani, A. Y. Khan, R. Qureshi, & A. Rahman, Heterogeneous Electron Transfer Rate Constants of Viologen Monocations at A Platinum Disk Electrode. Turkish Journal of Chemistry, 30 (2006) 165–180. https://doi.org/10.1196/annals.1448.047.
[45] H. T. Nguyen, N. J. Dharan, M. T. Q. Le, N. B. Nguyen, C. T. Nguyen, D. V. Hoang, H. N. Tran, C. T. Bui, D. T. Dang, D. N. Pham, H. T. Nguyen, T. V. Phan, D. T. Dennis, T. M. Uyeki, J. Mott, & Y. T. Nguyen, National Influenza Surveillance in Vietnam, 2006–2007. Vaccine, 28 (2009) 398–402. https://doi.org/10.1016/j.vaccine.2009.09.139.
[46] K. Asaka & K. Oguro, Bending of Polyelectrolyte Membrane Platinum Composites by Electric Stimuli. Part II. Response Kinetics. Journal of Electroanalytical Chemistry, 480 (2000) 186–198. https://doi.org/10.1016/S0022-0728(99)00458-1.
[47] M. Q. CHEW, Investigation of Uranium Redox Chemistry and Complexation across The Ph Range by Cyclic Voltammetry, 2013.
[48] S. Ou, H. Kashima, D. S. Aaron, J. M. Regan, & M. M. Mench, Full Cell Simulation and The Evaluation of The Buffer System on Air-Cathode Microbial Fuel Cell. Journal of Power Sources, 347 (2017) 159–169. https://doi.org/10.1016/j.jpowsour.2017.02.031.
[49] M. Z. Bazant, Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics. Accounts of Chemical Research, 46 (2013) 1144–1160. https://doi.org/10.1021/ar300145c.
[50] M. Gezginci & Y. Uysal, The Effect of Different Substrate Sources Used in Microbial Fuel Cells on Microbial Community. JSM Environmental Science & Ecology, 4 (2016) 1035.
[51] A. D. Tharali, N. Sain, & W. J. Osborne, Microbial Fuel Cells in Bioelectricity Production. Frontiers in Life Science, 9 (2016) 252–266. https://doi.org/10.1080/21553769.2016.1230787.
[52] S. A. Patil, C. Hägerhäll, & L. Gorton, Electron Transfer Mechanisms between Microorganisms and Electrodes in Bioelectrochemical Systems. Bioanalytical Reviews, 1 (2014) 71–129. https://doi.org/10.1007/11663_2013_2.
[53] P. C. Bogino, M. de las M. Oliva, F. G. Sorroche, & W. Giordano, The Role of Bacterial Biofilms and Surface Components in Plant-Bacterial Associations. International Journal of Molecular Sciences, 14 (2013) 15838–15859. https://doi.org/10.3390/ijms140815838.
[54] A. E. Franks & K. P. Nevin, Microbial Fuel Cells, A Current Review. Energies, 3 (2010) 899–919. https://doi.org/10.3390/en3050899.
[55] K. Rabaey & W. Verstraete, Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends in Biotechnology, 23 (2005) 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008.
[56] N. Jayasinghe, A. Franks, K. P. Nevin, & R. Mahadevan, Metabolic Modeling of Spatial Heterogeneity of Biofilms in Microbial Fuel Cells Reveals Substrate Limitations in Electrical Current Generation. Biotechnology Journal, 9 (2014) 1350–1361. https://doi.org/10.1002/biot.201400068.
[57] L. V. Reddy, S. Pradeep Kumar, & Y.-J. Wee, Microbial Fuel Cells (MFCs)-A Novel Source of Energy For New Millennium. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, (2010) 956–964.
[58] P. Clauwaert, P. Aelterman, T. H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, & W. Verstraete, Minimizing Losses in Bio-Electrochemical Systems: The Road to Applications. Applied Microbiology and Biotechnology, 79 (2008) 901–913. https://doi.org/10.1007/s00253-008-1522-2.
[59] Y. Yıldız, E. Erken, H. Pamuk, H. Sert, & F. Şen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5951–5958. https://doi.org/10.1166/jnn.2016.11710.
[60] S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, & F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst. Nano-Structures and Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002.
[61] Z. Daşdelen, Y. Yıldız, S. Eriş, & F. Şen, Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction. Applied Catalysis B: Environmental, 219 (2017) 511–516. https://doi.org/10.1016/j.apcatb.2017.08.014.
[62] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, & F. Sen, Eco-Friendly Hydrogenation of Aromatic Aldehyde Compounds by Tandem Dehydrogenation of Dimethylamine-Borane In The Presence of A Reduced Graphene Oxide Furnished Platinum Nanocatalyst. Catalysis Science & Technology, 6 (2016) 2318–2324. https://doi.org/10.1039/C5CY01462J.
[63] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, & F. Şen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect, 1 (2016) 953–958. https://doi.org/10.1002/slct.201600207.
[64] B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, & M. Kaya, One-Pot, Efficient And Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New Journal of Chemistry, 40 (2016) 748–754. https://doi.org/10.1039/c5nj02098k.
[65] S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, & F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles. Analytica Chimica Acta, 989 (2017) 88–94. https://doi.org/10.1016/j.aca.2017.07.051.
[66] B. Aday, H. Pamuk, M. Kaya, & F. Sen, Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives. Journal of Nanoscience and Nanotechnology, 16 (2016) 6498–6504. https://doi.org/10.1166/jnn.2016.12432.
[67] R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, & M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect, 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
[68] B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, & F. Şen, Monodisperse Pt(0)/DPA@GO Nanoparticles As Highly Active Catalysts for Alcohol Oxidation and Dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41 (2016) 5661–5669. https://doi.org/10.1016/j.ijhydene.2016.02.061.
[69] E. Erken, I. Esirden, M. Kaya, & F. Sen, A Rapid and Novel Method for The Synthesis of 5-Substituted 1H-Tetrazole Catalyzed by Exceptional Reusable Monodisperse Pt NPs@AC under The Microwave Irradiation. RSC Advances, 5 (2015) 68558–68564. https://doi.org/10.1039/c5ra11426h.
[70] Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, & F. Sen, Enhanced Electrocatalytic Activity and Durability of Highly Monodisperse Pt@PPy–PANI Nanocomposites as A Novel Catalyst for The Electro-Oxidation of Methanol. RSC Advances, 6 (2016) 50851–50857. https://doi.org/10.1039/C6RA06210E.
[71] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O. M. Kalfa, & F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Cluster Science, 27 (2016) 9–23. https://doi.org/10.1007/s10876-015-0892-8.
[72] F. Sen, Y. Karatas, M. Gulcan, & M. Zahmakiran, Amylamine Stabilized Platinum(0) Nanoparticles: Active and Reusable NanocatalystiIn The Room Temperature Dehydrogenation of Dimethylamine-Borane. RSC Advances, 4 (2014) 1526–1531. https://doi.org/10.1039/c3ra43701a.
[73] S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343. https://doi.org/10.1016/j.ijhydene.2017.11.051.
[74] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO as Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230.
[75] Y. Yıldız, H. Pamuk, Ö. Karatepe, Z. Dasdelen, & F. Sen, Carbon Black Hybrid Material Furnished Monodisperse Platinum Nanoparticles as Highly Efficient and Reusable Electrocatalysts for Formic Acid Electro-Oxidation. RSC Advances, 6 (2016) 32858–32862. https://doi.org/10.1039/C6RA00232C.
[76] E. Erken, Y. Yıldız, B. Kilbaş, & F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5944–5950. https://doi.org/10.1166/jnn.2016.11683.
[77] B. Çelik, E. Erken, S. Eriş, Y. Yildiz, B. Şahin, H. Pamuk, & F. Sen, Highly Monodisperse Pt(0)@AC NPs as Highly Efficient And Reusable Catalysts: The Effect of The Surfactant on Their Catalytic Activities in Room Temperature Dehydrocoupling of DMAB. Catalysis Science and Technology, 6 (2016) 1685–1692. https://doi.org/10.1039/c5cy01371b.
[78] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, & F. Şen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. International Journal of Hydrogen Energy, 41 (2016) 3093–3101. https://doi.org/10.1016/j.ijhydene.2015.12.138.
[79] G. Baskaya, İ. Esirden, E. Erken, F. Sen, & M. Kaya, Synthesis of 5-Substituted-1H-Tetrazole Derivatives Using Monodisperse Carbon Black Decorated Pt Nanoparticles as Heterogeneous Nanocatalysts. Journal of Nanoscience and Nanotechnology, 17 (2017) 1992–1999. https://doi.org/10.1166/jnn.2017.12867.
[80] B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Polymer-Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for The Dehydrogenation of Dimethylamine–Borane at Room Temperature. International Journal of Hydrogen Energy, 42 (2017) 23284–23291. https://doi.org/10.1016/j.ijhydene.2017.05.112.
[81] E. Demir, B. Sen, & F. Sen, Highly Efficient Pt Nanoparticles and f-MWCNT Nanocomposites Based Counter Electrodes for Dye-Sensitized Solar Cells. Nano-Structures & Nano-Objects, 11 (2017) 39–45. https://doi.org/10.1016/j.nanoso.2017.06.003.
[82] S. Eris, Z. Daşdelen, & F. Sen, Investigation of Electrocatalytic Activity and Stability of Pt@f-VC Catalyst Prepared by In-Situ Synthesis for Methanol Electrooxidation. International Journal of Hydrogen Energy, 43 (2018) 385–390. https://doi.org/10.1016/j.ijhydene.2017.11.063.
[83] S. Eris, Z. Daşdelen, & F. Sen, Enhanced Electrocatalytic Activity and Stability of Monodisperse Pt Nanocomposites for Direct Methanol Fuel Cells. Journal of Colloid and Interface Science, 513 (2018) 767–773. https://doi.org/10.1016/j.jcis.2017.11.085.
[84] B. Sen, A. Şavk, & F. Sen, Highly Efficient Monodisperse Pt Nanoparticles Confined in the Carbon Black Hybrid Material for Hydrogen Liberation. Journal of Colloid and Interface Science, 520 (2018) 112–118. https://doi.org/10.1016/j.jcis.2018.03.004.