Use of Enzymes in Different Types of Biofuel Cells
Amna Ahmad, Muhammad Hussnain Siddique, Saima Muzammil, Muhammad Riaz, Ijaz Rasul, Farrukh Azeem, Sabir Hussain, Habibullah Nadeem
Enzymes are those macromolecules which are needed for many chemical interconversion that maintain life. Progress in protein engineering and recombinant technology has developed the enzyme as essential molecules for use in therapeutical and industrial processes. For the conversion of chemical energy into electrical energy many electrochemical systems i.e., biofuel cells have used enzyme as their catalysts. In this chapter, we focused on the different type of biofuel cells which use enzymes for energy conversion. Enzymes, microbes and organelles are the biocatalysts which can be employed in biofuel cells.
Keywords
Glucose Oxidase, Bilirubin Oxidase, Bioelectrochemical System
Published online 2/21/2019, 22 pages
DOI: https://dx.doi.org/10.21741/9781644900079-2
Part of the book on Enzymatic Fuel Cells
References
[1] T. Enzym, Ueber das Verhalten verschiedener organisirtler und sog. ungeformter, 62 (1976) 3–7.
[2] N. Gurung, S. Ray, S. Bose, V. Rai, W.F. K, A broader view : Microbial enzymes and their relevance in industries, medicine, and beyond BioMed Research International (2013) Article ID 329121, 18 pages.
[3] R. Vallery, R.L. Devonshire, Life of Pasteur, (2003).
[4] A. Ullmann, Pasteur–Koch, distinctive ways of thinking about infectious diseases, Microbe 2 (2007) 383–387.
[5] H. Nadeem, M. Hamid, M. Hussnain, F. Azeem, S. Muzammil, M. Rizwan, M. Amjad, I. Rasul, M. Riaz, Microbial invertases : A review on kinetics, thermodynamics, physiochemical properties, Process Biochem. 50 (2015) 1202–1210. https://doi.org/10.1016/j.procbio.2015.04.015
[6] A. Bairoch, C.M. Universitaire, M. Servet, The ENZYME database in 2000, Nucleic Acids Res. 28 (2000) 304–305. https://doi.org/10.1093/nar/28.1.304
[7] M.J. Cooney, V. Svoboda, C. Lau, G. Martin, S.D. Minteer, Enzyme catalysed biofuel cells, Energy Environ. Sci. 1 (2008) 320–337. https://doi.org/10.1039/b809009b
[8] Z. Ghassemi, G. Slaughter, Biological fuel cells and membranes, Membranes (Basel). 7 (2017) 3. https://doi.org/10.3390/membranes7010003
[9] A.T. Yahiro, S.M. Lee, D.O. Kimble, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochim. Biophys. Acta (BBA)-Specialized Sect. Biophys. Subj. 88 (1964) 375–383.
[10] Y.F. Choo, J. Lee, I.S. Chang, B.H. Kim, Bacteria communities in microbial fuel cells enriched with high concentrations of glucose and glutamate, J. Microbiol. Biotechnol. 16 (2006) 1481–1484.
[11] S. Topcagic, S.D. Minteer, Development of a membraneless ethanol/oxygen biofuel cell, Electrochim. Acta 51 (2006) 2168–2172. https://doi.org/10.1016/j.electacta.2005.03.090
[12] M.T. Meredith, S.D. Minteer, Biofuel cells : Enhanced enzymatic bioelectrocatalysis, Annual Review of Anal. Chem. 5 (2012) 157-179. https://doi.org/10.1146/annurev-anchem-062011-143049
[13] A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chem. Rev. (2008) 2482–2505. https://doi.org/10.1021/cr068069y
[14] N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less glucose− O2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc. 125 (2003) 6588–6594. https://doi.org/10.1021/ja0346328
[15] P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, A glucose biofuel cell implanted in rats, PLoS One 5 (2010) e10476. https://doi.org/10.1371/journal.pone.0010476
[16] S. Fishilevich, L. Amir, Y. Fridman, A. Aharoni, L. Alfonta, Surface display of redox enzymes in microbial fuel cells, J. Am. Chem. Soc. 131 (2009) 12052–12053. https://doi.org/10.1021/ja9042017
[17] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson, S.D. Minteer, Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides, Biomacromolecules 5 (2004) 1241–1247. https://doi.org/10.1021/bm0345256
[18] E. Katz, A.F. Bückmann, I. Willner, Self-powered enzyme-based biosensors, J. Am. Chem. Soc. 123 (2001) 10752–10753. https://doi.org/10.1021/ja0167102
[19] F. Davis, P.J. Higson, Biofuel cells — Recent advances and applications, Biosens. Bioelect. 22 (2007) 1224–1235. https://doi.org/10.1016/j.bios.2006.04.029
[20] G.T.R. Palmore, G.M. Whitesides, Microbial and enzymatic biofuel cells, in: ACS Publications, 1994. https://doi.org/10.1021/bk-1994-0566.ch014
[21] A. Mitsos, I. Palou-Rivera, P.I. Barton, Alternatives for micropower generation processes, Ind. Eng. Chem. Res. 43 (2004) 74–84. https://doi.org/10.1021/ie0304917
[22] M. Doyle, G. Rajendran, W. Vielstich, H.A. Gasteiger, A. Lamm, Handbook of Fuel Cells Fundamentals, Technology and Applications, Fuel Cell Technol. Appl. 3 (2003).
[23] M.K. Weibel, C. Dodge, Biochemical fuel cells: Demonstration of an obligatory pathway involving an external circuit for the enzymatically catalyzed aerobic oxidation of glucose, Arch. Biochem. Biophys. 169 (1975) 146–151. https://doi.org/10.1016/0003-9861(75)90327-6
[24] B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science 337 (2012) 686–690. https://doi.org/10.1126/science.1217412
[25] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature 488 (2012) 313-319. https://doi.org/10.1038/nature11477
[26] A.P. Borole, G. Reguera, B. Ringeisen, Z.-W. Wang, Y. Feng, B.H. Kim, Electroactive biofilms: Current status and future research needs, Energy Environ. Sci. 4 (2011) 4813–4834. https://doi.org/10.1039/c1ee02511b
[27] U. Schroeder, F. Harnisch, Biofilms, Electroactive, in: Encycl. Appl. Electrochem., Springer, 2014: pp. 120–126. https://doi.org/10.1007/978-1-4419-6996-5_249
[28] P.-F. Tee, M.O. Abdullah, I.A.W. Tan, M.A.M. Amin, C. Nolasco-Hipolito, K. Bujang, Effects of temperature on wastewater treatment in an affordable microbial fuel cell-adsorption hybrid system, J. Environ. Chem. Eng. 5 (2017) 178–188. https://doi.org/10.1016/j.jece.2016.11.040
[29] Y. Ahn, B.E. Logan, Saline catholytes as alternatives to phosphate buffers in microbial fuel cells, Bioresour. Technol. 132 (2013) 436–439. https://doi.org/10.1016/j.biortech.2013.01.113
[30] Y. Ye, X. Zhu, B.E. Logan, Effect of buffer charge on performance of air-cathodes used in microbial fuel cells, Electrochim. Acta. 194 (2016) 441–447. https://doi.org/10.1016/j.electacta.2016.02.095
[31] P. Pandey, V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil, D. Pant, Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Appl. Energy. 168 (2016) 706–723. https://doi.org/10.1016/j.apenergy.2016.01.056
[32] D. Pant, A. Singh, G. Van Bogaert, Y.A. Gallego, L. Diels, K. Vanbroekhoven, An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects, Renew. Sustain. Energy Rev. 15 (2011) 1305–1313. https://doi.org/10.1016/j.rser.2010.10.005
[33] D. Leech, P. Kavanagh, W. Schuhmann, Enzymatic fuel cells: Recent progress, Electrochim. Acta. 84 (2012) 223–234. https://doi.org/10.1016/j.electacta.2012.02.087
[34] M.C. Beilke, T.L. Klotzbach, B.L. Treu, D. Sokic-Lazic, J. Wildrick, E.R. Amend, L.M. Gebhart, R.L. Arechederra, M.N. Germain, M.J. Moehlenbrock, Enzymatic Biofuel Cells, in: Micro Fuel Cells, Elsevier, 2009: pp. 179–241. https://doi.org/10.1016/B978-0-12-374713-6.00005-6
[35] S. Aquino Neto, A.R. De Andrade, New energy sources: The enzymatic biofuel cell, J. Braz. Chem. Soc. 24 (2013) 1891–1912. https://doi.org/10.5935/0103-5053.20130261
[36] A. Karimi, A. Othman, A. Uzunoglu, L. Stanciu, S. Andreescu, Graphene based enzymatic bioelectrodes and biofuel cells, Nanoscale. 7 (2015) 6909–6923. https://doi.org/10.1039/C4NR07586B
[37] X.-Y. Yang, G. Tian, N. Jiang, B.-L. Su, Immobilization technology: a sustainable solution for biofuel cell design, Energy Environ. Sci. 5 (2012) 5540–5563. https://doi.org/10.1039/C1EE02391H
[38] K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Biofuel cells select for microbial consortia that self-mediate electron transfer, Appl. Environ. Microbiol. 70 (2004) 5373–5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004
[39] G.-C. Gil, I.-S. Chang, B.H. Kim, M. Kim, J.-K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron. 18 (2003) 327–334. https://doi.org/10.1016/S0956-5663(02)00110-0
[40] C.M. Moore, S.D. Minteer, R.S. Martin, Microchip-based ethanol/oxygen biofuel cell, Lab Chip. 5 (2005) 218–225. https://doi.org/10.1039/b412719f
[41] S.D. Minteer, B.Y. Liaw, M.J. Cooney, Enzyme-based biofuel cells, Curr. Opin. Biotechnol. 18 (2007) 228–234. https://doi.org/10.1016/j.copbio.2007.03.007
[42] P. Atanassov, C. Apblett, S. Banta, S. Brozik, S.C. Barton, M. Cooney, B.Y. Liaw, S. Mukerjee, S.D. Minteer, Enzymatic biofuel cells, Interface-Electrochemical Soc. 16 (2007) 28–31.
[43] D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, Glucose oxidase anode for biofuel cell based on direct electron transfer, Electrochem. Commun. 8 (2006) 1204–1210. https://doi.org/10.1016/j.elecom.2006.05.024
[44] G. Gupta, V. Rajendran, P. Atanassov, Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 16 (2004) 1182–1185. https://doi.org/10.1002/elan.200403010
[45] P. Atanassov, C. Apblett, S. Banta, S. Brozik, S.C. Barton, M. Cooney, B.Y. Liaw, S. Mukerjee, S.D. Minteer, Enzymatic biofuel cells, The Electrochemical Society Interface (2007).
[46] R. Reiss, J. Ihssen, L. Thöny-Meyer, Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum, BMC Biotechnol. 11 (2011) 9. https://doi.org/10.1186/1472-6750-11-9
[47] F. Durand, C.H. Kjaergaard, E. Suraniti, S. Gounel, R.G. Hadt, E.I. Solomon, N. Mano, Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells, Biosens. Bioelectron. 35 (2012) 140–146. https://doi.org/10.1016/j.bios.2012.02.033
[48] F. Gao, L. Viry, M. Maugey, P. Poulin, N. Mano, Engineering hybrid nanotube wires for high-power biofuel cells, Nat. Commun. 1 (2010) 2-7. https://doi.org/10.1038/ncomms1000
[49] C. Vaz-Dominguez, S. Campuzano, O. Rüdiger, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernandez, A.L. De Lacey, Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition, Biosens. Bioelectron. 24 (2008) 531–537. https://doi.org/10.1016/j.bios.2008.05.002
[50] D.M. Mate, D. Gonzalez-Perez, M. Falk, R. Kittl, M. Pita, A.L. De Lacey, R. Ludwig, S. Shleev, M. Alcalde, Blood tolerant laccase by directed evolution, Chem. Biol. 20 (2013) 223–231. https://doi.org/10.1016/j.chembiol.2013.01.001
[51] N. Lalaoui, K. Elouarzaki, A. Le Goff, M. Holzinger, S. Cosnier, Efficient direct oxygen reduction by laccases attached and oriented on pyrene-functionalized polypyrrole/carbon nanotube electrodes, Chem. Commun. 49 (2013) 9281–9283. https://doi.org/10.1039/c3cc44994g
[52] C. Gutiérrez-Sánchez, M. Pita, C. Vaz-Dominguez, S. Shleev, A.L. De Lacey, Gold nanoparticles as electronic bridges for laccase-based biocathodes, J. Am. Chem. Soc. 134 (2012) 17212–17220. https://doi.org/10.1021/ja307308j
[53] S. Clot, C. Gutierrez-Sanchez, S. Shleev, A.L. De Lacey, M. Pita, Laccase cathode approaches to physiological conditions by local pH acidification, Electrochem. Commun. 18 (2012) 37–40. https://doi.org/10.1016/j.elecom.2012.01.022
[54] P. Scodeller, R. Carballo, R. Szamocki, L. Levin, F. Forchiassin, E.J. Calvo, Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide, J. Am. Chem. Soc. 132 (2010) 11132–11140. https://doi.org/10.1021/ja1020487
[55] R.D. Milton, F. Giroud, A.E. Thumser, S.D. Minteer, R.C.T. Slade, Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement, Phys. Chem. Chem. Phys. 15 (2013) 19371–19379. https://doi.org/10.1039/c3cp53351d
[56] A. Le Goff, M. Holzinger, S. Cosnier, Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells, Cell. Mol. Life Sci. 72 (2015) 941–952. https://doi.org/10.1007/s00018-014-1828-4
[57] A. Szczupak, J. Halámek, L. Halámková, V. Bocharova, L. Alfonta, E. Katz, Living battery–biofuel cells operating in vivo in clams, Energy Environ. Sci. 5 (2012) 8891–8895. https://doi.org/10.1039/c2ee21626d
[58] L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, Implanted biofuel cell operating in a living snail, J. Am. Chem. Soc. 134 (2012) 5040–5043. https://doi.org/10.1021/ja211714w
[59] K. MacVittie, J. Halámek, L. Halámková, M. Southcott, W.D. Jemison, R. Lobel, E. Katz, From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells, Energy Environ. Sci. 6 (2013) 81–86. https://doi.org/10.1039/C2EE23209J
[60] A. Le, G. Michael, H. Serge, Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells, Cell. Mol. Life Sci. (2015) 941–952.
[61] J.A. Castorena‐Gonzalez, C. Foote, K. MacVittie, J. Halámek, L. Halámková, L.A. Martinez‐Lemus, E. Katz, Biofuel cell operating in vivo in rat, Electroanalysis. 25 (2013) 1579–1584. https://doi.org/10.1002/elan.201300136