Elastic Properties of Heusler Alloys Ni(Co)-Mn(Cr, C)-In and Ni(Co)-Mn(Cr, C)-Sn

$12.50

Elastic Properties of Heusler Alloys Ni(Co)-Mn(Cr, C)-In and Ni(Co)-Mn(Cr, C)-Sn

Danil R. Baigutlin, Mikhail A. Zagrebin, Vladimir V. Sokolovskiy, Vasiliy D. Buchelnikov

Abstract. In this paper, a first-principles study of the structural and elastic Heusler alloys of the form Ni(Co)-Mn(Cr, C)-In and Ni(Co)-Mn(Cr, C)-Sn was made. For the investigated alloys tensors of elastic constants using the density functional theory realized in the VASP package and the finite strain method were calculated. Also, the shear moduli and bulk moduli for polycrystals were calculated using the Hill averaging and Young’s moduli. The Poisson’s coefficients and Debye temperatures are determined. The shear moduli and bulk moduli for polycrystals using Hill averaging were also calculated and the values of the characteristics such as Young’s modulus, the Poisson’s ratio and the Debye temperature were calculated.

Keywords
Elastic Constants, Debye Temperature, Ab Initio Calculation, Poisson’s Ratio, Young’s Modulus

Published online 11/15/2018, 9 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Danil R. Baigutlin, Mikhail A. Zagrebin, Vladimir V. Sokolovskiy, Vasiliy D. Buchelnikov, ‘Elastic Properties of Heusler Alloys Ni(Co)-Mn(Cr, C)-In and Ni(Co)-Mn(Cr, C)-Sn’, Materials Research Proceedings, Vol. 9, pp 83-91, 2018

DOI: https://dx.doi.org/10.21741/9781644900017-16

The article was published as article 16 of the book Shape Memory Alloys

References
[1] A.N. Vasiliev, V.D. Buchelnikov, et al., Shape memory ferromagnets, Phys.-Usp. 46 (2003) 559-689. https://doi.org/10.1070/PU2003v046n06ABEH001339
[2] P. Entel et al., Fundamental Aspects of Magnetic Shape Memory Alloys: Insights from Ab Initio and Monte Carlo Studies, Materials Science Forum 635 (2010) 3-12. https://doi.org/10.4028/www.scientific.net/MSF.635.3
[3] L. Manosa, A. Gonzalez-Comas, E. Obrado, A. Planes, Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy, Phys. Rev. B 55 (1997) 11068-11071. https://doi.org/10.1103/PhysRevB.55.11068
[4] M. Stipcich, L. Manosa, A. Planes, M. Morin, J. Zarestky, T. Lograsso, C. Stassis, Elastic constants of Ni−Mn−Ga magnetic shape memory alloys, Phys. Rev. B 70 (2004) 054115. https://doi.org/10.1103/PhysRevB.70.054115
[5] P.J. Brown, J. Crangle, T. Kanomata, M. Matsumota, K.-U. Neumann, B. Ouladdiaf, K.R.A. Ziebeck, The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa, J. Phys.: Condens. Matter. 14 (2002) 10159-10171. https://doi.org/10.1088/0953-8984/14/43/313
[6] Q.M. Hu, C.M. Li, R. Yang, S.E. Kulkova, D.I. Bazhanov, B. Johansson, L. Vitos, Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations, Phys. Rev. B 79 (2009) 144-112. https://doi.org/10.1103/PhysRevB.79.144112
[7] S. Ozdemir Kart, T.Cagın, Elastic properties of Ni2MnGa from first-principles calculations, J. Alloy. Comp. 508 (2010) 177-183. https://doi.org/10.1016/j.jallcom.2010.08.039
[8] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758-1775. https://doi.org/10.1103/PhysRevB.59.1758
[9] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
[10] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
[11] L. Chun-Mei, H. Qing-Miao, Y. Rui, J. Borje, V. Levente, Theoretical investigation of the magnetic and structural transitions of Ni-Co-Mn-Sn metamagnetic shape-memory alloys, Phys. Rev. B. 92 (2015) 024105.
[12] I.A. Abrikosov, A.Y. Nikonov, A.V. Ponomareva, A.I. Dmitriev, S.A. Barannikova, Theoretical modeling of thermodynamic and mechanical properties of the pure components of Ti and Zr based alloys using the exact muffin-tin orbitals method, Usp. Fiz. Met. 14 (2013) 319-352. https://doi.org/10.15407/ufm.14.04.319
[13] A. Reuss Berechung der Fliebgrenze von Mischkristallen auf Grund der Plastizitats-bedingung fur Einkristalle, Zs. Angew. Math. und Mech., 1 (1929) 49-58.
[14] W. Voight Lehrbuch der Kristallphysik, Berlin, Teubner 1928.
[15] R. Hill, The Elastic Behavior of a Crystalline Aggregate, Proc. Phys. Soc. А 65 (1952) 349-354. https://doi.org/10.1088/0370-1298/65/5/307
[16] S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954) 823-843. https://doi.org/10.1080/14786440808520496
[17] V. Levente, Computational Quantum Mechanics for Materials Engineers, Springer, Sweden, 2007.
[18] M. Kreissl, K.-U. Neumann, T. Stephans, K.R.A. Ziebeck, The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa, J. Phys.: Condens. Matter 15 (2003) 3831-3839. https://doi.org/10.1088/0953-8984/15/22/317
[19] E. Cesari, V.A. Chernenko, J. Font, J. Muntasell, ac technique applied to cp measurements in Ni–Mn–Ga alloys, Thermochim. Acta 433 (2005) 153-156. https://doi.org/10.1016/j.tca.2005.02.029