Occurrence of Pesticides and Hormones in Municipal Wastewater and their Removal by Membrane Bioreactors

$20.00

Occurrence of Pesticides and Hormones in Municipal Wastewater and their Removal by Membrane Bioreactors

V. Naddeo, L. Borea, S.W. Hasan, V. Belgiorno

The presence of emerging contaminants (ECs), including pharmaceutically active compounds (PhACs), steroid hormones and pesticides, in municipal wastewater as well as in the aquatic environment has been an issue of concern from an environmental and human health point of view. These ECs have been found in municipal wastewater in the concentration range of several μg/L. Considering the importance assumed by many of ECs, it is not possible to ban their usage. Therefore, it is essential to effectively remove these contaminants to protect the environment and drinking water resources. There is evidence that conventional treatment methods are not able to completely remove many ECs, therefore, advanced processes are demanded in order to degrade these ECs and protect both water environment and human health. Membrane bioreactors (MBRs), coupling biological degradation with membrane filtration, are one possible option due to the advantages that characterize this technology. The present chapter discusses the occurrence and fate of pesticides and hormones in wastewater and proposes a comparison between removal efficiency of conventional activated sludge treatments and MBRs, also defining common concentrations at which these ECs are found in wastewater.

Keywords
Emerging Contaminants, MBR, Trace Organic Contaminants, Wastewater

Published online 5/1/2018, 31 pages

DOI: https://dx.doi.org/10.21741/9781945291715-6

Part of the book on Organic Pollutants in Wastewater II

References
[1] N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination 239 (2009) 229–246. https://doi.org/10.1016/j.desal.2008.03.020
[2] K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut. 158 (2010) 3462–3471. https://doi.org/10.1016/j.envpol.2010.08.009
[3] Q. Sui, J. Huang, S. Deng, G. Yu, Q. Fan, Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China, Water Res. 44 (2010) 417–426. https://doi.org/10.1016/j.watres.2009.07.010
[4] M. Macova, B.I. Escher, J. Reungoat, S. Carswell, K.L. Chue, J. Keller, J.F. Mueller, Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration, Water Res. 44 (2010) 477–492. https://doi.org/10.1016/j.watres.2009.09.025
[5] Z. Liu, Y. Kanjo, S. Mizutani, A review of phytoestrogens: Their occurrence and fate in the environment, Water Res. 44 (2010) 567–577. https://doi.org/10.1016/j.watres.2009.03.025
[6] R. Rosal, A. Rodríguez, J.A. Perdigón-Melón, A. Petre, E. García-Calvo, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res. 44 (2010) 578–588. https://doi.org/10.1016/j.watres.2009.07.004
[7] J.L. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J. Iqbal Chaudhry, M. Arshad, S. Mahmood, A. Ali, A. Ahmed Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature. 427 (2004) 630–633. https://doi.org/10.1038/nature02317
[8] C.J. Houtman, Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe, J. Integr. Environ. Sci. 7 (2010) 271–295. https://doi.org/10.1080/1943815X.2010.511648
[9] C. Adams, Y. Wang, K. Loftin, M. Meyer, Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng. 128 (2002) 8. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
[10] A.A. Khan, Inamuddin, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium(IV) phosphate, React. Funct. Polym. 63 (2005) 119–133. https://doi.org/10.1016/j.reactfunctpolym.2005.02.001
[11] L.N. Nguyen, F.I. Hai, S. Yang, J. Kang, F.D.L. Leusch, F. Roddick, W.E. Price, L.D. Nghiem, Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi, Bioresour. Technol. 148 (2013) 234–241. https://doi.org/10.1016/j.biortech.2013.08.142
[12] I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review, Sci. Total Environ. 409 (2011) 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
[13] L.A. Pérez-Estrada, S. Malato, A. Agüera, A.R. Fernández-Alba, Degradation of dipyrone and its main intermediates by solar AOPs: Identification of intermediate products and toxicity assessment, Catal. Today. 129 (2007) 207–214. https://doi.org/10.1016/j.cattod.2007.08.008
[14] W. De Schepper, J. Dries, L. Geuens, J. Robbens, R. Blust, Conventional and (eco) toxicological assessment of batch partial ozone oxidation and subsequent biological treatment of a tank truck cleaning generated concentrate, Water Res. 43 (2009) 4037–4049. https://doi.org/10.1016/j.watres.2009.06.014
[15] A. Santos, W. Ma, S.J. Judd, Membrane bioreactors: Two decades of research and implementation, Desalination. 273 (2011) 148–154. https://doi.org/10.1016/j.desal.2010.07.063
[16] H.V. Phan, F.I. Hai, J. Kang, H.K. Dam, R. Zhang, W.E. Price, A. Broeckmann, L.D. Nghiem, Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR), Bioresour. Technol. 165 (2014) 96–104. https://doi.org/10.1016/j.biortech.2014.03.094
[17] S. González, M. Petrovic, D. Barceló, Removal of a broad range of surfactants from municipal wastewater – Comparison between membrane bioreactor and conventional activated sludge treatment, Chemosphere. 67 (2007) 335–343. https://doi.org/10.1016/j.chemosphere.2006.09.056
[18] P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options, J. Hydrol. 389 (2010) 416–428. https://doi.org/10.1016/j.jhydrol.2010.06.005
[19] M. Petrović, S. Gonzalez, D. Barceló, Analysis and removal of emerging contaminants in wastewater and drinking water, TrAC Trends Anal. Chem. 22 (2003) 685–696. https://doi.org/10.1016/S0165-9936(03)01105-1
[20] L.N. Nguyen, F.I. Hai, J. Kang, W.E. Price, L.D. Nghiem, Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes, Int. Biodeterior. Biodegrad. 85 (2013) 474–482. https://doi.org/10.1016/j.ibiod.2013.03.014
[21] O.T. Komesli, M. Muz, M.S. Ak, S. Bakırdere, C.F. Gökçay, Comparison of EDCs removal in full and pilot scale membrane bioreactor plants: Effect of flux rate on EDCs removal in short SRT, J. Environ. Manage. 2013 (2017) 847-852. https://doi.org/10.1016/j.jenvman.2016.06.004
[22] M. Schriks, M.B. Heringa, M.M.E. van der Kooi, P. de Voogt, A.P. van Wezel, Toxicological relevance of emerging contaminants for drinking water quality, Water Res. 44 (2010) 461–476. https://doi.org/10.1016/j.watres.2009.08.023
[23] H. Yamamoto, Y. Nakamura, S. Moriguchi, Y. Nakamura, Y. Honda, I. Tamura, Y. Hirata, A. Hayashi, J. Sekizawa, Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, https://doi.org/10.1016/j.watres.2008.10.039biodegradation, and sorption experiments, Water Res. 43 (2009) 351–362.
[24] S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. DeCarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination. 202 (2007) 156–181. https://doi.org/10.1016/j.desal.2005.12.052
[25] W.H. Organization, others, The world medicines situation, (2004). https://apps.who.int/iris/handle/10665/68735 (accessed March 27, 2017).
[26] J. Jiang, N. Wan, A model for ecological assessment to pesticide pollution management, Ecol. Model. 220 (2009) 1844–1851. https://doi.org/10.1016/j.ecolmodel.2009.04.028
[27] D. Navaratna, L. Shu, V. Jegatheesan, Evaluation of herbicide (persistent pollutant) removal mechanisms through hybrid membrane bioreactors, Bioresour. Technol. 200 (2016) 795–803. https://doi.org/10.1016/j.biortech.2015.10.041
[28] R. Das, A. Steege, S. Baron, J. Beckman, R. Harrison, Pesticide-related illness among migrant farm workers in the United States, Int. J. Occup. Environ. Health. 7 (2001) 303–312. https://doi.org/10.1179/oeh.2001.7.4.303
[29] N. Yang, M. Matsuda, M. Kawano, T. Wakimoto, PCBs and organochlorine pesticides (OCPs) in edible fish and shellfish from China, Chemosphere. 63 (2006) 1342–1352. https://doi.org/10.1016/j.chemosphere.2005.09.029
[30] World Health Organization, ed., Guidelines for drinking-water quality, 4th ed, World Health Organization, Geneva, 2011.
[31] E.D. Ongley, F. and A.O. of the U. Nations, Control of Water Pollution from Agriculture, Food & Agriculture Org., 1996.
[32] Y.J. Wang, J.K. Lin, Estimation of selected phenols in drinking water with in situ acetylation and study on the DNA damaging properties of polychlorinated phenols, Arch. Environ. Contam. Toxicol. 28 (1995) 537–542. https://doi.org/10.1007/BF00211639
[33] Y.-J. Wang, M.-C. Yang, M.-H. Pan, Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 46 (2008) 3739–3748. https://doi.org/10.1016/j.fct.2008.09.064
[34] M.R. Milnes, D.S. Bermudez, T.A. Bryan, T.M. Edwards, M.P. Gunderson, I.L.V. Larkin, B.C. Moore, L.J. Guillette Jr., Contaminant-induced feminization and demasculinization of nonmammalian vertebrate males in aquatic environments, Environ. Res. 100 (2006) 3–17. https://doi.org/10.1016/j.envres.2005.04.002
[35] J.P. Sumpter, Feminized responses in fish to environmental estrogens, Toxicol. Lett. 82–83 (1995) 737–742. https://doi.org/10.1016/0378-4274(95)03517-6
[36] A.M. Vajda, L.B. Barber, J.L. Gray, E.M. Lopez, A.M. Bolden, H.L. Schoenfuss, D.O. Norris, Demasculinization of male fish by wastewater treatment plant effluent, Aquat. Toxicol. 103 (2011) 213–221. https://doi.org/10.1016/j.aquatox.2011.02.007
[37] J. Gibs, P.E. Stackelberg, E.T. Furlong, M. Meyer, S.D. Zaugg, R.L. Lippincott, Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time, Sci. Total Environ. 373 (2007) 240–249. https://doi.org/10.1016/j.scitotenv.2006.11.003
[38] J. CHEN, C. LIU, Z. YANG, J. WANG, Residues and characteristics of organochlorine pesticides in the surface water in the suburb of Beijing, Earth Sci. Front. 15 (2008) 242–247. https://doi.org/10.1016/S1872-5791(09)60005-1
[39] S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, Elsevier, 2011.
[40] L. Innocenti, D. Bolzonella, P. Pavan, F. Cecchi, Effect of sludge age on the performance of a membrane bioreactor: influence on nutrient and metals removal, Desalination 146 (2002) 467–474. https://doi.org/10.1016/S0011-9164(02)00551-9
[41] C. Brepols, E. Dorgeloh, F.-B. Frechen, W. Fuchs, S. Haider, A. Joss, K. de Korte, C. Ruiken, W. Schier, H. van der Roest, M. Wett, T. Wozniak, Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology, Desalination. 231 (2008) 20–26. https://doi.org/10.1016/j.desal.2007.11.035
[42] A. Drews, Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures, J. Membr. Sci. 363 (2010) 1–28. https://doi.org/10.1016/j.memsci.2010.06.046
[43] A.N.L. Ng, A.S. Kim, A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters, Desalination 212 (2007) 261–281. https://doi.org/10.1016/j.desal.2006.10.013
[44] F. Zanetti, G. De Luca, R. Sacchetti, Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes, Bioresour. Technol. 101 (2010) 3768–3771. https://doi.org/10.1016/j.biortech.2009.12.091
[45] J. Arévalo, G. Garralón, F. Plaza, B. Moreno, J. Pérez, M.Á. Gómez, Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study, Desalination. 243 (2009) 32–41. https://doi.org/10.1016/j.desal.2008.04.013
[46] J. Ottoson, A. Hansen, B. Björlenius, H. Norder, T.A. Stenström, Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant, Water Res. 40 (2006) 1449–1457. https://doi.org/10.1016/j.watres.2006.01.039
[47] M.D. Williams, M. Pirbazari, Membrane bioreactor process for removing biodegradable organic matter from water, Water Res. 41 (2007) 3880–3893. https://doi.org/10.1016/j.watres.2007.06.010
[48] E. Marti, H. Monclús, J. Jofre, I. Rodriguez-Roda, J. Comas, J.L. Balcázar, Removal of microbial indicators from municipal wastewater by a membrane bioreactor (MBR), Bioresour. Technol. 102 (2011) 5004–5009. https://doi.org/10.1016/j.biortech.2011.01.068
[49] F.J. Simmons, D.H.-W. Kuo, I. Xagoraraki, Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing, Water Res. 45 (2011) 2739–2750. https://doi.org/10.1016/j.watres.2011.02.001
[50] I.-S. Chang, P. Le Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng. 128 (2002) 1018–1029. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)
[51] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material, Water Res. 43 (2009) 1489–1512. https://doi.org/10.1016/j.watres.2008.12.044
[52] M. Henze, M.C.M. van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological Wastewater Treatment, IWA Publishing, 2008.
[53] P. Schoeberl, M. Brik, M. Bertoni, R. Braun, W. Fuchs, Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater, Sep. Purif. Technol. 44 (2005) 61–68. https://doi.org/10.1016/j.seppur.2004.12.004
[54] A.L. Lim, R. Bai, Membrane fouling and cleaning in microfiltration of activated sludge wastewater, J. Membr. Sci. 216 (2003) 279–290. https://doi.org/10.1016/S0376-7388(03)00083-8
[55] H. Choi, K. Zhang, D.D. Dionysiou, D.B. Oerther, G.A. Sorial, Influence of cross-flow velocity on membrane performance during filtration of biological suspension, J. Membr. Sci. 248 (2005) 189–199. https://doi.org/10.1016/j.memsci.2004.08.027
[56] H.C. Chua, T.C. Arnot, J.A. Howell, Controlling fouling in membrane bioreactors operated with a variable throughput, Desalination. 149 (2002) 225–229. https://doi.org/10.1016/S0011-9164(02)00764-6
[57] S.P. Hong, T.H. Bae, T.M. Tak, S. Hong, A. Randall, Fouling control in activated sludge submerged hollow fiber membrane bioreactors, Desalination 143 (2002) 219–228. https://doi.org/10.1016/S0011-9164(02)00260-6
[58] I.-S. Chang, S.-O. Bag, C.-H. Lee, Effects of membrane fouling on solute rejection during membrane filtration of activated sludge, Process Biochem. 36 (2001) 855–860. https://doi.org/10.1016/S0032-9592(00)00284-3
[59] T. Ueda, K. Hata, Y. Kikuoka, Treatment of domestic sewage from rural settlements by a membrane bioreactor, Water Sci. Technol. 34 (1996) 189–196.
[60] P. Côté, H. Buisson, M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater, Water Sci. Technol. 38 (1998) 437–442.
[61] K.-H. Ahn, K.-G. Song, E. Choa, J. Cho, H. Yun, S. Lee, J. Me, Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process, Desalination 157 (2003) 345–352. https://doi.org/10.1016/S0011-9164(03)00415-6
[62] S.L. Khor, D.D. Sun, Y. Liu, J.O. Leckie, Biofouling development and rejection enhancement in long SRT MF membrane bioreactor, Process Biochem. 42 (2007) 1641–1648. https://doi.org/10.1016/j.procbio.2007.09.009
[63] H. Monclús, J. Sipma, G. Ferrero, I. Rodriguez-Roda, J. Comas, Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal, Bioresour. Technol. 101 (2010) 3984–3991. https://doi.org/10.1016/j.biortech.2010.01.038
[64] C. Abegglen, A. Joss, C.S. McArdell, G. Fink, M.P. Schlüsener, T.A. Ternes, H. Siegrist, The fate of selected micropollutants in a single-house MBR, Water Res. 43 (2009) 2036–2046. https://doi.org/10.1016/j.watres.2009.02.005
[65] P. Battistoni, F. Fatone, D. Bolzonella, P. Pavan, Full scale application of the coupled alternate cycles-membrane bioreactor (AC-MBR) process for wastewater reclamation and reuse, Water Pract. Technol. 1 (2006) wpt2006077. https://doi.org/10.2166/wpt.2006.077
[66] G. Li, L. Wu, C. Dong, G. Wu, Y. Fan, Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor, J. Environ. Sci. China. 19 (2007) 12–17. https://doi.org/10.1016/S1001-0742(07)60002-3
[67] A.M. Rodrigues, V. Ferreira, V.V. Cardoso, E. Ferreira, M.J. Benoliel, Determination of several pesticides in water by solid-phase extraction, liquid chromatography and electrospray tandem mass spectrometry, J. Chromatogr. A. 1150 (2007) 267–278. https://doi.org/10.1016/j.chroma.2006.09.083
[68] M. Kuster, M.J. López de Alda, M.D. Hernando, M. Petrovic, J. Martín-Alonso, D. Barceló, Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain), J. Hydrol. 358 (2008) 112–123. https://doi.org/10.1016/j.jhydrol.2008.05.030
[69] R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide survey of polar organic persistent pollutants in European river waters, Environ. Pollut. 157 (2009) 561–568. https://doi.org/10.1016/j.envpol.2008.09.020
[70] P. Palma, M. Kuster, P. Alvarenga, V.L. Palma, R.M. Fernandes, A.M.V.M. Soares, M.J. López de Alda, D. Barceló, I.R. Barbosa, Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (South of Portugal) using on-line solid phase extraction-liquid chromatography-tandem mass spectrometry, Environ. Int. 35 (2009) 545–551. https://doi.org/10.1016/j.envint.2008.09.015
[71] Z. Vryzas, G. Vassiliou, C. Alexoudis, E. Papadopoulou-Mourkidou, Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece, Water Res. 43 (2009) 1–10. https://doi.org/10.1016/j.watres.2008.09.021
[72] M. Babut, B. Corinne, B. Marc, F. Patrick, G. Jeanne, G. Geneviève, Developing environmental quality standards for various pesticides and priority pollutants for French freshwaters, J. Environ. Manage. 69 (2003) 139–147. https://doi.org/10.1016/S0301-4797(03)00133-6
[73] H. Chin, P. Elefsiniotis, N. Singhal, Biodegradation of 2,4-dicholophenoxyacetic acid using an acidogenic anaerobic sequencing batch reactor, J. Environ. Eng. Sci. 4 (2005) 57–63. https://doi.org/10.1139/s04-044
[74] H.R. Rogers, Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges, Sci. Total Environ. 185 (1996) 3–26. https://doi.org/10.1016/0048-9697(96)05039-5
[75] P.B. Kurt-Karakus, T.F. Bidleman, D.C.G. Muir, J. Struger, E. Sverko, S.J. Cagampan, J.M. Small, L.M. Jantunen, Comparison of concentrations and stereoisomer ratios of mecoprop, dichlorprop and metolachlor in Ontario streams, 2006-2007 vs. 2003-2004, Environ. Pollut. Barking Essex 1987. 158 (2010) 1842–1849. https://doi.org/10.1016/j.envpol.2009.11.003
[76] G. Teijon, L. Candela, K. Tamoh, A. Molina-Díaz, A.R. Fernández-Alba, Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain), Sci. Total Environ. 408 (2010) 3584–3595. https://doi.org/10.1016/j.scitotenv.2010.04.041
[77] S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry, Environ. Eng. Sci. 20 (2003) 449–469. https://doi.org/10.1089/109287503768335931
[78] K.C. Wijekoon, F.I. Hai, J. Kang, W.E. Price, W. Guo, H.H. Ngo, L.D. Nghiem, The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment, Bioresour. Technol. 144 (2013) 247–254. https://doi.org/10.1016/j.biortech.2013.06.097
[79] M. Bernhard, J. Müller, T.P. Knepper, Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment, Water Res. 40 (2006) 3419–3428. https://doi.org/10.1016/j.watres.2006.07.011
[80] M. Bach, M. Letzel, U. Kaul, S. Forstner, G. Metzner, J. Klasmeier, S. Reichenberger, H.G. Frede, Measurement and modeling of bentazone in the river Main (Germany) originating from point and non-point sources, Water Res. 44 (2010) 3725–3733. https://doi.org/10.1016/j.watres.2010.04.010
[81] H. Singer, S. Jaus, I. Hanke, A. Lück, J. Hollender, A.C. Alder, Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water, Environ. Pollut. Barking Essex 1987. 158 (2010) 3054–3064. https://doi.org/10.1016/j.envpol.2010.06.013
[82] A. Wick, G. Fink, A. Joss, H. Siegrist, T.A. Ternes, Fate of beta blockers and psycho-active drugs in conventional wastewater treatment, Water Res. 43 (2009) 1060–1074. https://doi.org/10.1016/j.watres.2008.11.031
[83] D.R. Buhler, M.E. Rasmusson, H.S. Nakaue, Occurrence of hexachlorophene and pentachlorophenol in sewage and water, Environ. Sci. Technol. 7 (1973) 929–934. https://doi.org/10.1021/es60082a006
[84] E. Stumm-Zollinger, G.M. Fair, Biodegradation of Steroid Hormones, J. Water Pollut. Control Fed. 37 (1965) 1506–1510.
[85] C.E. Purdom, P.A. Hardiman, V.V.J. Bye, N.C. Eno, C.R. Tyler, J.P. Sumpter, Estrogenic Effects of Effluents from Sewage Treatment Works, Chem. Ecol. 8 (1994) 275–285. https://doi.org/10.1080/02757549408038554
[86] J. Zha, L. Sun, Y. Zhou, P.A. Spear, M. Ma, Z. Wang, Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus), Toxicol. Appl. Pharmacol. 226 (2008) 298–308. https://doi.org/10.1016/j.taap.2007.10.006
[87] S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Res. 41 (2007) 1013–1021. https://doi.org/10.1016/j.watres.2006.06.034
[88] A.M. Andersson, N.E. Skakkebaek, Exposure to exogenous estrogens in food: possible impact on human development and health, Eur. J. Endocrinol. 140 (1999) 477–485. https://doi.org/10.1530/eje.0.1400477
[89] M. Kuster, D.A. Azevedo, M.J. López de Alda, F.R. Aquino Neto, D. Barceló, Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil), Environ. Int. 35 (2009) 997–1003. https://doi.org/10.1016/j.envint.2009.04.006
[90] B. Lei, S. Huang, Y. Zhou, D. Wang, Z. Wang, Levels of six estrogens in water and sediment from three rivers in Tianjin area, China, Chemosphere. 76 (2009) 36–42. https://doi.org/10.1016/j.chemosphere.2009.02.035
[91] G.-G. Ying, R.S. Kookana, A. Kumar, M. Mortimer, Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland, Sci. Total Environ. 407 (2009) 5147–5155. https://doi.org/10.1016/j.scitotenv.2009.06.002
[92] A.C. Vidaeff, L.E. Sever, In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence, Reprod. Toxicol. Elmsford N. 20 (2005) 5–20.
[93] E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, R. Bagnati, C. Chiabrando, F. Pomati, C. Rossetti, D. Calamari, Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control, Environ. Sci. Pollut. Res. Int. 13 (2006) 15–21. https://doi.org/10.1065/espr2006.01.004
[94] T.A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers1, Water Res. 32 (1998) 3245–3260. https://doi.org/10.1016/S0043-1354(98)00099-2
[95] M.R. Servos, D.T. Bennie, B.K. Burnison, A. Jurkovic, R. McInnis, T. Neheli, A. Schnell, P. Seto, S.A. Smyth, T.A. Ternes, Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants, Sci. Total Environ. 336 (2005) 155–170. https://doi.org/10.1016/j.scitotenv.2004.05.025
[96] M. Hewitt, M. Servos, An overview of substances present in Canadian aquatic environments associated with endocrine disruption, Water Qual. Res. J. Can. 36 (2001) 191–213.
[97] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance, Environ. Sci. Technol. 36 (2002) 1202–1211. https://doi.org/10.1021/es011055j
[98] S. Zorita, P. Hallgren, L. Mathiasson, Steroid hormone determination in water using an environmentally friendly membrane based extraction technique, J. Chromatogr. A. 1192 (2008) 1–8. https://doi.org/10.1016/j.chroma.2008.03.030
[99] Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, J. Yoon, Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes, Desalination. 202 (2007) 16–23. https://doi.org/10.1016/j.desal.2005.12.033
[100] Y. Zhang, J.L. Zhou, Occurrence and removal of endocrine disrupting chemicals in wastewater, Chemosphere. 73 (2008) 848–853. https://doi.org/10.1016/j.chemosphere.2008.06.001
[101] S. Liu, G.-G. Ying, J.-L. Zhao, F. Chen, B. Yang, L.-J. Zhou, H. Lai, Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry, J. Chromatogr. A. 1218 (2011) 1367–1378. https://doi.org/10.1016/j.chroma.2011.01.014
[102] N. Nakada, T. Tanishima, H. Shinohara, K. Kiri, H. Takada, Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment, Water Res. 40 (2006) 3297–3303. https://doi.org/10.1016/j.watres.2006.06.039
[103] J. Sánchez-Avila, J. Bonet, G. Velasco, S. Lacorte, Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant, Sci. Total Environ. 407 (2009) 4157–4167. https://doi.org/10.1016/j.scitotenv.2009.03.016
[104] L. Clouzot, B. Marrot, P. Doumenq, N. Roche, 17α-Ethinylestradiol: An endocrine disrupter of great concern. Analytical methods and removal processes applied to water purification. A review, Environ. Prog. 27 (2008) 383–396. https://doi.org/10.1002/ep.10291
[105] B.L.L. Tan, D.W. Hawker, J.F. Müller, F.D.L. Leusch, L.A. Tremblay, H.F. Chapman, Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia, Environ. Int. 33 (2007) 654–669. doi:10.1016/j.envint.2007.01.008.
[106] J. Lian, J.X. Liu, Y.S. Wei, Fate of nonylphenol polyethoxylates and their metabolites in four Beijing wastewater treatment plants, Sci. Total Environ. 407 (2009) 4261–4268. https://doi.org/10.1016/j.scitotenv.2009.03.022
[107] N. Tadkaew, F.I. Hai, J.A. McDonald, S.J. Khan, L.D. Nghiem, Removal of trace organics by MBR treatment: The role of molecular properties, Water Res. 45 (2011) 2439–2451. https://doi.org/10.1016/j.watres.2011.01.023
[108] A. Carucci, S. Milia, G. Cappai, A. Muntoni, A direct comparison amongst different technologies (aerobic granular sludge, SBR and MBR) for the treatment of wastewater contaminated by 4-chlorophenol, J. Hazard. Mater. 177 (2010) 1119–1125. https://doi.org/10.1016/j.jhazmat.2010.01.037
[109] N. Tadkaew, F.I. Hai, J.A. McDonald, S.J. Khan, L.D. Nghiem, Removal of trace organics by MBR treatment: The role of molecular properties, Water Res. 45 (2011) 2439–2451. https://doi.org/10.1016/j.watres.2011.01.023
[110] H. Bouju, G. Buttiglieri, F. Malpei, Perspectives of persistent organic pollutants (POPS) removal in an MBR pilot plant, Desalination. 224 (2008) 1–6. https://doi.org/10.1016/j.desal.2007.04.071
[111] F.I. Hai, N. Tadkaew, J.A. McDonald, S.J. Khan, L.D. Nghiem, Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?, Bioresour. Technol. 102 (2011) 6299–6303. https://doi.org/10.1016/j.biortech.2011.02.019
[112] A.A. Alturki, N. Tadkaew, J.A. McDonald, S.J. Khan, W.E. Price, L.D. Nghiem, Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications, J. Membr. Sci. 365 (2010) 206–215. https://doi.org/10.1016/j.memsci.2010.09.008
[113] C. Visvanathan, L.N. Thu, V. Jegatheesan, J. Anotai, Biodegradation of pentachlorophenol in a membrane bioreactor, Desalination. 183 (2005) 455–464. https://doi.org/10.1016/j.desal.2005.03.046
[114] W. Dejonghe, E. Berteloot, J. Goris, N. Boon, K. Crul, S. Maertens, M. Höfte, P. De Vos, W. Verstraete, E.M. Top, Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain, Appl. Environ. Microbiol. 69 (2003) 1532–1541. https://doi.org/10.1128/AEM.69.3.1532-1541.2003
[115] L. Gunnarsson, M. Adolfsson-Erici, B. Björlenius, C. Rutgersson, L. Förlin, D.G.J. Larsson, Comparison of six different sewage treatment processes—Reduction of estrogenic substances and effects on gene expression in exposed male fish, Sci. Total Environ. 407 (2009) 5235–5242. https://doi.org/10.1016/j.scitotenv.2009.06.018
[116] T. Trinh, B. van den Akker, H.M. Coleman, R.M. Stuetz, J.E. Drewes, P. Le-Clech, S.J. Khan, Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor, Sci. Total Environ. 550 (2016) 176–183. https://doi.org/10.1016/j.scitotenv.2015.12.083
[117] V. Cases, V. Alonso, V. Argandoña, M. Rodriguez, D. Prats, Endocrine disrupting compounds: A comparison of removal between conventional activated sludge and membrane bioreactors, Desalination. 272 (2011) 240–245. https://doi.org/10.1016/j.desal.2011.01.026
[118] Y.K.K. Koh, T.Y. Chiu, A. Boobis, E. Cartmell, M.D. Scrimshaw, J.N. Lester, Treatment and removal strategies for estrogens from wastewater, Environ. Technol. 29 (2008) 245–267. https://doi.org/10.1080/09593330802099122
[119] C. Scruggs, G. Hunter, E. Snyder, B. Long, S. Snyder, EDCS IN WASTEWATER: WHAT’S THE NEXT STEP?, Proc. Water Environ. Fed. 2004 (2004) 642–664. https://doi.org/10.2175/193864704784138403
[120] J. Sipma, B. Osuna, N. Collado, H. Monclús, G. Ferrero, J. Comas, I. Rodriguez-Roda, Comparison of removal of pharmaceuticals in MBR and activated sludge systems, Desalination. 250 (2010) 653–659. https://doi.org/10.1016/j.desal.2009.06.073