Nanocatalysts for Direct 2-Propanol Fuel Cells
M. Nacef, M.L. Chelaghmia, A.M. Affoune, M. Pontié
2-propanol is a new fuel source for fuel cells application. Its electrooxidation reaction has been developed in both acid and alkaline 2-propanol fuel cells. The Acid type fuel cell is the older one where platinum electrocatalysts have been widely investigated. More recently, alkaline medium and palladium electrocatalyst were considered as a suitable pair candidate for 2-propanol electrooxidation reaction. The present book chapter is designed to draw a clear picture of the state of the art of direct 2-propanol fuel cell. Thermodynamics aspects of direct 2-propanol fuel cell are presented and a review of catalysts used in 2-propanol oxidation reaction is exposed and especially nanocatalysts are emphasized. This chapter gives a starting point for future research on how 2-propanol would feed fuel cells.
Keywords
2-Propanol, Nanocatalyst, Electrooxidation, Alcohol Crossover, Platinum, Palladium, Direct Alcohol Fuel Cell
Published online 5/5/2019, 26 pages
Citation: M. Nacef, M.L. Chelaghmia, A.M. Affoune, M. Pontié, Nanocatalysts for Direct 2-Propanol Fuel Cells, Materials Research Foundations, Vol. 49, pp 103-128, 2019
DOI: https://doi.org/10.21741/9781644900192-3
Part of the book on Nanomaterials for Alcohol Fuel Cells
References
[1] F. Fathirad, A. Mostafavi, D. Afzali, Bimetallic Pd–Mo nanoalloys supported on vulcan XC-72R carbon as anode catalysts for direct alcohol fuel cell, Int. J. Hydrogen Energy. 42 (2017) 3215-3221. https://doi.org/10.1016/j.ijhydene.2016.09.138
[2] L. An, R. Chen, Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production, J. Power Sources. 329 (2016) 484-501. https://doi.org/10.1016/j.jpowsour.2016.08.105
[3] B. Hasa, E. Kalamaras, E.I. Papaioannou, J. Vakros, L. Sygellou, A. Katsaounis, Effect of TiO2 loading on Pt-Ru catalysts during alcohol electrooxidation, Electrochem. Acta. 179 (2015) 578-587. https://doi.org/10.1016/j.electacta.2015.04.104
[4] D. Takky, B. Beden, J.M. Leger, C. Lamy, Evidence for the effect of molecular structure on the electrochemical reactivity of alcohols: Part III. Electro-oxidation of the butanol isomers on platinum single crystals in an alkaline medium, J. Electroanal. Chem. Interfacial Electrochem. 256 (1998) 127-136. https://doi.org/10.1016/0022-0728(88)85012-5
[5] www.sigmaaldrich.com
[6] U.B. Demirci, How green are chemicals used as liquid fuels in direct liquid-feed fuel cells, Environ. Int. 35 (2009) 626-631. https://doi.org/10.1016/j.envint.2008.09.007
[7] CLIP, Chemical Laboratory Information Profile, 2-propanol, J. Chem. Educ.85 (2008) 1186. https://doi.org/10.1021/ed085p1186
[8] K. Weissermel, H.J. Harp. Industrial organic chemistry. VCH Publishers, New York, 1997. https://doi.org/10.1002/9783527616688
[9] Y. Onoue, Y.Mizutani, S. Akiyama, Isopropyl alcohol by direct hydration of propylene, Bull. Japan Petroleum Institut. 15 (1973) 50-55. https://doi.org/10.1627/jpi1959.15.50
[10] Z. Dai, H. Dong, Y. Zhu, Y. Zhang, Y. Li, Y. Ma, Introducing a single secondary alcohol dehydrogenase into butanol tolerant clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation, Biotechnol. Biofuels. 5 (2012) 44-53. https://doi.org/10.1186/1754-6834-5-44
[11] A. Rahman, S. S-Al-Deyab, A review on reduction of acetone to isopropanol with Ni nano superactive, heterogeneous catalysts as an environmentally benevolent approach, Appl. Catal. A. 469 (2014) 517-253. https://doi.org/10.1016/j.apcata.2013.10.015
[12] E. Grousseau, J. Lu, N. Gorret, S.E. Guillouet, A.J. Sinskey, Isopropanol production with engineered Cupriavidus necator as bioproduction platform, Appl. Microbiol. Biotechnol. 98 (2014) 4277-4290. https://doi.org/10.1007/s00253-014-5591-0
[13] J. Wang, S. Wasmus, R.F. Savinell, Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer electrolyte fuel cell, J. Electrochem. Soc. 142 (1995) 4218-4224. https://doi.org/10.1149/1.2048487
[14] M. Nacef, A.M. Affoune, M. Umeda, Kinetic of the anodic reaction in direct alcohol fuel cells, Algerian J. Adv. Mater. 3 (2006) 95-98.
[15] J.P. I. de Souza, S.L. Queiroz, K. Bergamaski, E.R. Gonzalez, F.C. Nart, Electro-oxidation of ethanol on Pt, Rh, and Pt-Rh electrodes. A study using DEMS and in-situ FTIR techniques, J. Phys. Chem. B. 106 (2002) 9825-9830. https://doi.org/10.1021/jp014645c
[16] S.S. Gupta, J. Datta, A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits, J. Electroanal. Chem., 594 (2006) 65-72. https://doi.org/10.1016/j.jelechem.2006.05.022
[17] M. Zhiani, S. Majidi, H. Rostami, M.M. Taghiabadi, Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells, Int. J. Hydrogen Energy. 40 (2015) 568-576. https://doi.org/10.1016/j.ijhydene.2014.10.144
[18] M.L. Chelaghmia, M. Nacef, A.M. Affoune, Ethanol electrooxidation on activated graphite supported platinum-nickel in alkaline medium, J. Appl. Electrochem. 42 (2012) 819-826. https://doi.org/10.1007/s10800-012-0440-2
[19] M.L. Chelaghmia, M. Nacef, A.M. Affoune, Elaboration d’électocatalyseur platine-nickel pour l’oxydation anodique du methanol, Algerian J. Adv. Mater. 5 (2008) 439-442.
[20] Z. Qi, M. Hollett, A. Attia, A. Kaufman, Low temperature direct 2-propanol fuel cells, Electrochem. Solid-State Lett. 5 (2002)129–130. https://doi.org/10.1149/1.1475197
[21] E. Pastor, S. Wasmus, T. Iwasita, Spectroscopic investigations of C3 primary alcohols on platinum electrodes in acid solutions. Part I. n-propanol, J. Electroanal. Chem. 350 (1993) 97-116. https://doi.org/10.1016/0022-0728(93)80199-R
[22] E. Pastor, S. Wasmus, T. Iwasita, DEMS and in-situ FTIR investigations of C3 primary alcohols on platinum electrodes in acid solutions. Part II. Allyl alcohol, J. Electroanal. Chem. 353 (1993) 81-100. https://doi.org/10.1016/0022-0728(93)80288-S
[23] E. Pastor, S. Wasmus, T. Iwasita, Spectroscopic investigations of C3 primary alcohols on platinum electrodes in acid solutions. Part III. Propargyl alcohol, J. Electroanal. Chem. 371 (1994) 167-177. https://doi.org/10.1016/0022-0728(93)03250-S
[24]P. Gao, S.C. Chang, Z. Zhou, M.J. Weaver, Electrooxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time FTIR spectroscopy, J. Electroanal. Chem. 212 (1989) 161–178. https://doi.org/10.1016/0022-0728(89)87077-9
[25] E. Pastor, S. Gonzalez, A. J. Arvia, Electroreactivity of isopropanol on platinum in acids studied by DEMS and FTIRS, J. Electroanal. Chem. 395 (1995) 233–242. https://doi.org/10.1016/0022-0728(95)04129-C
[26] I. A. Rodrigues, F. C. Nart, 2-Propanol oxidation on platinum and platinum–rhodium electrodeposits, J. Electroanal. Chem. 590 (2006) 145–151. https://doi.org/10.1016/j.jelechem.2006.02.030
[27] S.G. Sun, D.F. Yang, Z.W. Tian, In-situ FTIR studies on the adsorption and oxidation of n-propanol and ispropanol at a plaint electrode in sulphuric acid solutions, J. Electroanal. Chem. 289 (1990) 177–187. https://doi.org/10.1016/0022-0728(90)87215-6
[28] J. Larminie, A.L. Dicks, Fuel Cell Systems Explained, New York, Wiley, 2000.
[29] M. Nacef, A.M. Affoune, Comparison between direct small molecular weight alcohols fuel cell’s and hydrogen fuel cell’s parameters at low and high temperature. Thermodynamic study, Int. J. Hydrogen Energy. 36 (2011) 4208-4219. https://doi.org/10.1016/j.ijhydene.2010.06.075
[30] U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns, J. Power Sources. 157 (2006) 164 -168.
[31] M. Nacef, M.L. Chelaghmia A.M. Affoune, Etude comparative des propriétés thermodynamiques des piles à combustible à hydrogène et aux alcools, Algerian J. Adv. Mater. 5 (2008) 447-450.
[32] N. Kariya, A. Fukuoka, M. Ichikawa, Direct PEM fuel cell using “organic chemical hydrides” with zero-CO2 emission and low crossover, Phys. Chem. Chem. Phys. 8 (2006) 1724-1730. https://doi.org/10.1039/b518369c
[33] J. Otomo, I. Shimada, F. Kosaka, K. Ishiyama, Y. Oshima, Reaction analysis of alcohol electro-oxidation at intermediate temperatures, ECS Trans., 50 (2013) 2009-2017. https://doi.org/10.1149/05002.2009ecst
[34] H. Wang, Z. Jusys, R.J. Behm, Ethanol electrooxidation on a carbon-supported Pt catalyst: Reaction kinetics and product yields, J. Phys.Chem. B. 108 (2004) 19413-19424. https://doi.org/10.1021/jp046561k
[35] F. Kardigan, B. Beden, J.M. Leger, C. Lamy, Synergistic effect in the electrocatalytic oxidation of methanol on platinum+palladium alloy electrodes, J . Electroanal. Chem. 125 (1981) 89-103. https://doi.org/10.1016/S0022-0728(81)80326-9
[36] T. Lopes, E. Antolini, E.R. Gonzalez, Carbon supported Pt–Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells, Int. J . Hydrogen Energy. 33 (2008) 5563-5570. https://doi.org/10.1016/j.ijhydene.2008.05.030
[37] E. Antolini, Catalysts for ethanol fuel cells, J. Power Sources. 170 (2007)1-12. https://doi.org/10.1016/j.jpowsour.2007.04.009
[38] D. Cao, S.H. Bergens, A direct 2-propanol polymer electrolyte fuel cell, J. Power Sources. 124 (2003) 12–17. https://doi.org/10.1016/S0378-7753(03)00613-X
[39] S.S. Gupta, J. Datta, An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs), J. Chem. Sci. 117 (2005) 337–344. https://doi.org/10.1007/BF02708448
[40] A. Santasalo, T. Kallio, K. Kontturi, Performance of liquid fuels in a platinum-ruthenium-catalysed polymer electrolyte fuel cell, Platinum Metals Rev. 53 (2009) 58–66. https://doi.org/10.1595/147106709X416040
[41] S.L.J. Gojković, A.V. Tripković, R.M. Stevanović, Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells, J. Serb. Chem. Soc. 72 (2007) 1419–1425. https://doi.org/10.2298/JSC0712419G
[42] S.G. Sun, Y. Lin, Kinetic aspects of oxidation of isopropanol on Pt electrodes investigated by in situ time-resolved FTIR spectroscopy, J. Electroanal. Chem. 375 (1994) 401–404. https://doi.org/10.1016/0022-0728(94)03536-9
[43] S.G. Sun, Y. Lin, Kinetics of isopropanol oxidation on Pt(111), Pt(110), Pt(100), Pt(610) and Pt(211) single crystal electrodes-studies of in situ time-resolved FTIR spectroscopy, Electrochim. Acta. 44 (1998) 1153–1162. https://doi.org/10.1016/S0013-4686(98)00218-7
[44] S.G. Sun, Y. Lin, In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes, Electrochim. Acta. 41 (1996) 693–700. https://doi.org/10.1016/0013-4686(95)00358-4
[45] R.G.C.S. Reis, C.A. Martens, G.A. Camara, The electrooxidation of 2-propanol: An example of an alternative way to look at in situ FTIR data, Electrocatal. 1 (2010) 116–121. https://doi.org/10.1007/s12678-010-0018-x
[46] I.de A. Rodrigues, J.P.I. De Souza, E. Pastor, F.C. Nart, Cleavage of the C–C bond during the electrooxidation of 1-propanol and 2-propanol: Effect of the Pt morphology and of codeposited Ru,Langmuir. 13 (1997) 6829–6835. https://doi.org/10.1021/la9704415
[47] J. Otomo, X. Li, T. Kobayashi, C.J. Wen, H. Nagamoto, H. Takahashi, AC-impedance spectroscopy of anodic reactions with adsorbed intermediates: electro-oxidations of 2-propanol and methanol on carbon-supported Pt catalyst, J. Electroanal. Chem. 573 (2004) 99–109.
[48] Z. Qi, A. Kaufman, Performance of 2-propanol in direct-oxidation fuel cells, J. Power Sources. 112 (2002) 121–129. https://doi.org/10.1016/S0378-7753(02)00357-9
[49] C.G. Lee, H. Ojima, M. Umeda, Electrooxidation of C1 to C3 alcohols with Pt and Pt–Ru sputter deposited interdigitated array electrodes, Electrochim. Acta. 53 (2008) 3029–3035. https://doi.org/10.1016/j.electacta.2007.11.019
[50] M. Umeda, H. Sugii, I. Uchida, Alcohol electrooxidation at Pt and Pt–Ru sputtered electrodes under elevated temperature and pressurized conditions, J. Power Sources. 179 (2008) 489–496. https://doi.org/10.1016/j.jpowsour.2008.01.011
[51] C.G. Lee, M. Umeda, I. Uchida, Cyclic voltammetric analysis of C1–C4 alcohol electrooxidations with Pt/C and Pt–Ru/C microporous electrodes, J. Power Sources. 160 (2006) 78–89. https://doi.org/10.1016/j.jpowsour.2006.01.068
[52] B. Habibi, E. Dadashpour,Electrooxidation of 2-propanol and 2-butanol on the Pt–Ni alloy nanoparticles in acidic media, Electrochim. Acta. 88 (2013) 157–164. https://doi.org/10.1016/j.electacta.2012.10.020
[53] Y. H. Chu, Y. G. Shul, Combinatorial investigation of Pt–Ru–Sn alloys as an anode electrocatalysts for direct alcohol fuel cells, Int. J. Hydrogen. Energy.35 (2010) 11261–11270. https://doi.org/10.1016/j.ijhydene.2010.07.062
[54] L. An, T. S. Zhao, R. Chen, Q. X. Wu, A novel direct ethanol fuel cell with high power density, J. Power Sources. 47 (2002) 3707-3714.
[55] E. Antolini, E. R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195(2010) 3431-3450. https://doi.org/10.1016/j.jpowsour.2009.11.145
[56] A. Tripković, K. Popović, B. Grgur, B. Blizanac, P. Ross, N. Marković, Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions, Electrochim. Acta. 47 (2002) 3707–3714. https://doi.org/10.1016/S0013-4686(02)00340-7
[57] E.H. Yu, K. Scott, Development of direct methanol alkaline fuel cells using anion exchange membrane, J. Power Sources. 137 (2004) 248-256. https://doi.org/10.1016/j.jpowsour.2004.06.004
[58] R. Parsons, T. VanderNoot, The oxidation of small organic molecules. A survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45. https://doi.org/10.1016/0022-0728(88)87028-1
[59] J. Liu, J. Ye, C. Xu, S.P. Jiang, Y. Tong, Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium, J. Power Sources. 177 (2008) 67–70. https://doi.org/10.1016/j.jpowsour.2007.11.015
[60] A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, M. T.M. Koper, Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC, Electrochem. Commun. 13 (2011) 466–469. https://doi.org/10.1016/j.elecom.2011.02.022
[61] A. Santasalo, F.J. Vidal-Iglesias, J. Solla-Gullón, A. Berná, T. Kallio, J.M. Feliu, Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes, Electrochim. Acta. 54 (2009) 6576-6583. https://doi.org/10.1016/j.electacta.2009.06.033
[62] Y. Liu, Y. Zeng, R. Liu, H. Wu, G. Wang, D. Cao, Poisoning of acetone to Pt and Au electrodes for electrooxidation of 2-propanol in alkaline medium, Electrochim. Acta. 76 (2012) 174–178. https://doi.org/10.1016/j.electacta.2012.04.130
[63] T. Okanishi, Y. Katayama, R. Ito, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical oxidation of 2-propanol over platinum and palladium electrodes in alkaline media studied by in situ attenuated total reflection infrared spectroscopy, Phys. Chem. Chem. Phys. 18 (2016) 10109-10115. https://doi.org/10.1039/C5CP07518A
[64] M. E. P. Markiewicz, S. H. Bergens, A liquid electrolyte alkaline direct 2-propanol fuel cell, J. Power Sources. 195 (2010) 7196–7201. https://doi.org/10.1016/j.jpowsour.2010.05.017
[65] M.E.P. Markiewicz, S.H. Bergens, Electro-oxidation of 2-propanol and acetone over platinum, platinum–ruthenium, and ruthenium nanoparticles in alkaline electrolytes, J. Power Sources. 185 (2008) 222–225. https://doi.org/10.1016/j.jpowsour.2008.06.023
[66] H. Lin, G.L. Chen, Z.S. Zheng, J.Z. Zhou, S.P. Chen, Z.H. Lin, The adsorption and oxidation of isopropanol at platinum electrode in alkaline media, Acta Phys.Chim. Sin. 21 (2005) 1280-1284.
[67] Z. Qi, A. Kaufman, Liquid-feed direct oxidation fuel cells using neat 2-propanol as fuel, J. Power Sources. 118 (2003) 54-60. https://doi.org/10.1016/S0378-7753(03)00061-2
[68] C.C. Yang, S.J Chiu, K.T. Lee, W.C. Chien, C.T. Lin, C.A. Huang, Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell, J. Power Sources. 184 (2008) 44-51. https://doi.org/10.1016/j.jpowsour.2008.06.011
[69] A. Santasalo-Aarnio, P. Peljo, E. Aspberg, K. Kontturi, T. Kallio, Methanol, ethanol and iso-propanol performance in alkaline direct alcohol fuel cell (ADAFC), ECS Trans. 33 (2010) 1701-1714. https://doi.org/10.1149/1.3484660
[70] Y. Feng, W. Yin, Z. Li, C. Huang, Y. Wang, Ethylene glycol, 2-propanol electrooxidation in alkaline medium on the ordered intermetallic Pt-Pb surface, Electrochim. Acta. 55 (2010) 6991–6999. https://doi.org/10.1016/j.electacta.2010.06.080
[71] J. Ye, J. Liu, C. Xu, S.P. Jiang, Y. Tong, Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium, Electrochem. Commun. 9 (2007) 2760–2763. https://doi.org/10.1016/j.elecom.2007.09.016
[72] Y. Su, C. Xu, J. Liu, Z. Liu, Electrooxidation of 2-propanol compared ethanol on Pd electrode in alkaline medium, J. Power Sources. 194 (2009) 295-297. https://doi.org/10.1016/j.jpowsour.2009.04.076
[73] Y. Cheng, Y. Liu, D. Cao, G. Wang, Y. Gao, Effects of acetone on electrooxidation of 2-propanol in alkaline medium on the Pd/Ni-foam electrode, J. Power Sources. 196 (2011) 3124-3128. https://doi.org/10.1016/j.jpowsour.2010.12.008
[74] K. Tran, T.Q. Nguyen, A.M. Bartrom, A. Sadiki, J.L. Haan, A fuel‐flexible alkaline direct liquid fuel cell, Fuel Cells. 14(2014) 834-841. https://doi.org/10.1002/fuce.201300291
[75] C. Xu, Z. Tian, Z. Chen, S.P. Jiang, Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media, Electrochem. Commun. 10 (2008) 246–249. https://doi.org/10.1016/j.elecom.2007.11.036
[76] W. Zhou, C. Wang, J. Xu, Y. Du, P. Yang, Enhanced electrocatalytic performance for isopropanol oxidation on Pd–Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl, Mater. Chem. Phys. 123 (2010) 390-395. https://doi.org/10.1016/j.matchemphys.2010.04.027
[77] D. Renard, C. Mc Cain, B. Baidoun, A. Bondy, K. Bandyopadhyay, Electrocatalytic properties of in situ-generated palladium nanoparticle assemblies towards oxidation of multi-carbon alcohols and polyalcohols, Colloids Surf. A: Physicochem. Eng. Aspects. 436 (2014) 44-54. https://doi.org/10.1016/j.colsurfa.2014.09.027
[78] A. Serov, U. Martinez, A. Falase, P. Atanassov, Highly active PdCu catalysts for electrooxidation of 2-propanol, Electrochem. Commun. 22 (2012) 193-196. https://doi.org/10.1016/j.elecom.2012.06.023
[79] Q. Yi, Q. Chen, Z. Yang, A novel membrane-less direct alcohol fuel cell, J. Power Sources. 298(2015) 171-176. https://doi.org/10.1016/j.jpowsour.2015.08.050
[80] T.R. Vidakovic, M.L. Avramov-Ivic, B.Z. Nikolic, The influence of 2-propanol on the reaction of formaldehyde electrooxidation or vice versa on gold (100) and (111) single crystal planes in alkaline medium, J. Serb. Chem. Soc. 65 (2000) 915-922. https://doi.org/10.2298/JSC0012915V
[81] J.H. Zhang, Y.J. Liang, N. Li, Z.Y. Li, C.W. Xu, S.P. Jiang, A remarkable activity of glycerol electrooxidation on gold in alkaline medium, Electrochim. Acta. 59 (2012) 156–159. https://doi.org/10.1016/j.electacta.2011.10.048
[82] M.L. Chelaghmia, M. Nacef, A.M. Affoune, M. Pontié, Facile synthesis of Ni(OH)2 modified disposable pencil graphite electrode and its application for highly sensitive non‐enzymatic glucose sensor, Electroanalysis. 30 (2018) 1117-1124. https://doi.org/10.1002/elan.201800002
[83] M. Nacef, M.L. Chelaghmia A.M. Affoune, M. Pontié, Electrochemical investigation of glucose on a highly sensitive nickel‐copper modified pencil graphite electrode, Electroanalysis. in press. https://doi.org/10.1002/elan.201800622
[84] Q. Lin, Y. Wei, W. Liu, Y. Yu, J. Hu, Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode, Int. J. Hydrogen Energy. 42 (2017) 1403-1411. https://doi.org/10.1016/j.ijhydene.2016.10.011
[85] K. Ye, G. Wang, D. Cao, G. Wang, Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis, Top. Curr. Chem. 376 (2018) 42. https://doi.org/10.1007/s41061-018-0219-y
[86] M. Jafarian, M. Rashvandavei, F. Gobal, S. Rayati, M.G. Mahjani, Electrocatalytic oxidation of 1-propanol and 2-propanol on electro-active films derived from NiII-(N,N′-bis(2-hydroxy, 3-methoxy benzaldehyde)-1,2-propandiimine) modified glassy carbon electrode, Electrocatal. 2 (2011) 163–171. https://doi.org/10.1007/s12678-011-0049-y
[87] W. Wang, S. Liu, Y. Wang, W. Jing, X. Niu, Z. Lei, Achieving high electrocatalytic performance towards isopropanol electrooxidation based on a novel N-doping carbon anchored Pd3Fe alloy, Int. J. Hydrogen Energy. 43 (2018) 15952-15961. https://doi.org/10.1016/j.ijhydene.2018.06.159
[88] Q. Yi, T. Zou, Y. Zhang, X. Liu, G. Xu, H. Nie, X. Zhou, A novel alcohol/iron (III) fuel cell, J. Power Sources. 321 (2016) 219-225. https://doi.org/10.1016/j.jpowsour.2016.04.134